(49-2) 07 * << * >> * Русский * English * Содержание * Все выпуски

Electrically controlled optical spectral filters for DWDM communication networks based on multiplexed three-layer holographic photopolymer-liquid crystal diffraction structures
V.О. Dolgirev 1, D.S. Rastrygin 1, S.N. Sharangovich 1

Tomsk State University of Control Systems and Radioelectronics, 634050, Tomsk Russia, Lenin Avenue 40

  PDF, 1865 kB

DOI: 10.18287/2412-6179-CO-1547

Страницы: 210-214.

Язык статьи: English.

Аннотация:
This paper presents the diffraction characteristics of electrically controlled multiplexed three-layer holographic diffraction structures formed in photopolymer materials with a high proportion of nematic liquid crystals. The results obtained demonstrate the possibility of using multilayer holographic diffraction structures as the main element for electrically controlled optical spectral filters for dense wavelength division multiplexing communication networks.

Ключевые слова:
MIHDS, PPM-LC, diffraction, DOE.

Благодарности
The work was carried out within the framework of the Priority 2030 strategic academic leadership program.

Citation:
Dolgirev VO, Rastrygin DS, Sharangovich SN. Electrically controlled optical spectral filters for DWDM communication networks based on multiplexed three-layer holographic PPM-LC diffraction structures. Computer Optics 2025; 49(2): 210-214. DOI: 10.18287/2412-6179-CO-1547.

References:

  1. Dolgirev VO, Sharangovich SN, Rastrygin DS. Study of light diffraction on electrically controlled multiplexed multilayer inhomogeneous holographic PPM-LC diffraction structures. Proc School-Seminar "Waves-2023". Nanophotonics, Metamaterials and Photonic Crystals 2023; 47-50.
  2. Malallah R, et al. Improving the uniformity of holographic recording using multilayer photopolymer. Part I. Theoretical analysis. J Opt Soc Am A 2019; 36(3): 320-333. DOI: 10.1364/JOSAA.36.000320.
  3. Malallah R, et al. Improving the uniformity of holographic recording using multilayer photopolymer. Part II. Experimental results. J Opt Soc Am A 2019; 36(3): 334-344. DOI: 10.1364/JOSAA.36.000334.
  4. Aimin Y, et al. Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout. J. Opt. Soc. A 2009; 26(1): 135-141. DOI: 10.1364/josaa.26.000135.
  5. Pen EF, Rodionov MY, Chubakov PA. Spectral properties of a cascade of holographic reflection gratings separated by a uniform layer. Optoelectron Instrument Data Procerss 2017; 53; 59-67. DOI: 10.3103/S8756699017010095.
  6. Nordin GP, Johnson RV, Ranguay AR. Diffraction properties of stratified volume holographic optical elements. J Opt Soc Am A 1992; 9(12): 2206-2217. DOI: 10.1364/JOSAA.9.002206.
  7. Pen EF, Rodionov MY. Properties of multilayer nonuniform holographic structures. Quantum Electron 2010; 40(10): 919-924. DOI: 10.1070/QE2010v040n10ABEH014360.
  8. Dolgirev VO, Sharangovich SN. Study of light diffraction on electrically controlled multilayer inhomogeneous structures with smooth optical inhomogeneity based on photopolymerizing compositions with nematic liquid crystals. Bull Russ Acad Sci: Phys 2022; 86(1): S46-S49. DOI: 10.3103/S106287382270037X.
  9. Yan X, Wang X, Chen Y, Wang Y, Dai Y, Yang X, Ma G. Influence of buffer layer and grating layer on diffraction of multilayer volume holographic grating. Appl Phys B 2019; 125: 67. DOI: 10.1007/s00340-019-7173-4.
  10. Yan X, Wang X, Chen Y, Dai Y, Yang X, Ma G, Gao L. Generation of individually modulated femtosecond pulse string by multilayer volume holographic gratings. Opt Express 2014; 22(21): 26140-26140. DOI: 10.1364/OE.22.026128.
  11. Kazanskiy NL, Kharitonov SI, Khonina SN, Volotovsky SG, Strelkov YuS. Simulation of hyperspectrometer on spectral linear variable filters. Computer Optics 2014; 38(2): 256-270. DOI: 10.18287/0134-2452-2014-38-2-256-270.
  12. Firsov NA, Podlipnov VV, Ivliev NA, Ryskova DD, Pirogov AV, Muzyka AA, Makarov AR, Lobanov VE, Platonov VI, Babichev AN, Monastyrskiy VA, Olgarenko VI, Nikolaev DP, Skidanov RV, Nikonorov AV, Kazanskiy NL, Soifer VA. Ensembles of spectral-spatial convolutional neural network models for classifying soil types in hyperspectral images. Computer Optics 2023; 47(5): 795-805. DOI: 10.18287/2412-6179-CO-1260.
  13. Wu R, et al. Optimized multi-spectral filter arrays for spectral reconstruction. Sensors 2019; 19(13): 2905. DOI: 10.3390/s19132905.
  14. Gao A, Zhang B, Cao W. Optical spectrum fingerprint: a novel application of optics as an encryption-decryption technique. Proc SPIE 2021; 11682: 116820B. DOI: 10.1117/12.2578643.
  15. Mahmud MS, et al. Holographic recording in acrylamide photopolymers: thickness limitations. Appl Opt 2009; 48(14): 2642-2648. DOI: 10.1364/AO.48.002642.
  16. Shelkovnikov VV, et al. Dynamics of pulsed recording of holographic diffraction gratings in photopolymer materials. Opt Spectrosc 2005; 99(5): 806-815. DOI: 10.1134/1.2135860.
  17. Kudryashov SI. High-throughput micropatterning of plasmonic surfaces by multiplexed femtosecond laser pulses for advanced IR-sensing applications. Appl Surf Sci 2019; 484: 948-956. DOI: 10.1016/j.apsusc.2019.04.048.
  18. Yakovlev DD, Yakovlev DA. Limits of applicability of the direct ray approximation in modeling optical properties of liquid-crystal diffraction gratings. Computer Optics 2020; 44(1): 40-52. DOI: 10.18287/2412-6179-CO-562.
  19. Sharangovich SN, Dolgirev VO. Analytical model of light diffraction on multilayer inhomogeneous holographic PPM-LC diffraction structures. 2022 VIII Int Conf on Information Technology and Nanotechnology (ITNT) 2022: 1-6. DOI: 10.1109/ITNT55410.2022.9848782.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20