(49-2) 08 * << * >> * Русский * English * Содержание * Все выпуски

MIMO communication system capacity in random visible light channel
A.Y. Parshin 1, Y.N. Parshin 1

Ryazan State Radio Engineering University named after V.F. Utkin,
390005, Russia, Ryazan, Gagarina str. 59/1

  PDF, 797 kB

DOI: 10.18287/2412-6179-CO-1548

Страницы: 215-221.

Язык статьи: English.

Аннотация:
Being a promising one, optical information transmission standard expands capabilities of communication systems in the conditions of heavy frequency band load. Optical communication system efficiency in a room can be improved by multi-antenna systems. The aim of this paper is a theoretical study of MIMO Li-Fi communication system capacity. The calculation of ergodic capacity is performed for MIMO optical communication system in terms of various scenarios of light propagation. Receiving and transmitting system is modeled in the form of receivers and transmitters randomly placed in a room with randomly oriented light-emitting and photo diodes. A matrix of channel parameters is modeled using corresponding probability density functions and additive Gaussian noise at receiver inputs. The paper also considers various scenarios of optical signal propagation and their influence on optical channel capacity. The comparison of various methods of power distribution between original modes of MIMO optical communication system as well as their influence on capacity is carried out. Optimal power distribution between MIMO system eigenmodes is determined by maximum capacity criterion.

Ключевые слова:
light fidelity, discrete-continuous channel, optical signal processing, signal-to-noise ratio, MIMO channel capacity.

Citation:
Parshin AY, Parshin YN. MIMO communication system capacity in random visible light channel. Computer Optics 2025; 49(2): 215-221. DOI: 10.18287/2412-6179-CO-1548.

References:

  1. Rallis KG, et al. Energy efficient cooperative communications in aggregated VLC/RF networks with NOMA. IEEE Trans Commun 2023; 71(9): 5408-5419. DOI: 10.1109/TCOMM.2023.3292486.
  2. Mana SM, et al. Distributed multiuser MIMO for LiFi: experiments in an operating room. J Lightw Technol 2021; 39(18): 5730-5743. DOI: 10.1109/JLT.2021.3091385.
  3. Nuwanpriya A, Ho S-W, Chen CS. Indoor MIMO visible light communications: novel angle diversity receivers for mobile users. IEEE J Sel Areas Commun 2015; 33(9): 1780-1792. DOI: 10.1109/JSAC.2015.2432514.
  4. Kouhini SM, et al. All-optical distributed MIMO for LiFi: spatial diversity versus spatial multiplexing. IEEE Access 2022; 10: 102646-102658. DOI: 10.1109/ACCESS.2022.3207475.
  5. Bober KL, et al. Distributed multiuser MIMO for LiFi in industrial wireless applications. J Lightw Technol 2021; 39(11): 3420-3433. DOI: 10.1109/JLT.2021.3069186.
  6. Salvi S, Geetha V. From light to Li-Fi: research challenges in modulation, MIMO, deployment strategies and handover. Int Conf on Data Science and Engineering (ICDSE) 2019: 107-119. DOI: 10.1109/ICDSE47409.2019.8971475.
  7. Georlette V, Bette S, Brohez S, Perez-Jimenez R, Point N, Moeyaert V. Outdoor visible light communication channel modeling under smoke condition and analogy with fog condition. Optics 2020; 1(3): 259-281. DOI: 10.3390/opt1030020.
  8. Zubow A, Gawłowicz P, Bober KL, Jungnickel V, Habel K, Dressler F. Hy-Fi: aggregation of LiFi and WiFi using MIMO in IEEE 802.11. IEEE 22nd Int Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) 2021: 100-108. DOI: 10.1109/WoWMoM51794.2021.00023.
  9. Zubow A, et al. Hybrid-Fidelity: utilizing IEEE 802.11 MIMO for practical aggregation of LiFi and WiFi. IEEE Trans Mob Comput 2023; 22(8): 4682-4697. DOI: 10.1109/TMC.2022.3157452.
  10. Martena GL, et al. A simulation tool for interference analysis in MIMO wavelength division LiFi indoor networks. 2023 IEEE Int Conf on Communications Workshops 2023: 86-91. DOI: 10.1109/ICCWorkshops57953.2023.10283751.
  11. Kouhini SM, et al. Distributed MIMO experiment using LiFi over plastic optical fiber. 2020 IEEE Globecom Workshops 2020: 1-6. DOI: 10.1109/GCWkshps50303.2020.9367435.
  12. Corrêa CRB, Cunha TEB, Tangdiongga E, Deng X, Linnartz JMG, Koonen AMJ. WDM over POF for D-MIMO LiFi system. 2020 Optical Wireless Communication Conf (OWCC) 2020: 1-2.
  13. Parshin YuN, Kudryashov VI. Analysis of the capacity of the information transmission channel from an unmanned aerial vehicle with an inaccurate channel matrix [In Russian]. Vestnik of Ryazan State Radio Engineering University 2015; 2(52): 22-27.
  14. Parshin YuN, Zharikov PV, Kaznacheev PA. Hardware and software complex for testing the MIMO channel matrix of the information transmission system from a mobile object [In Russian]. Vestnik of Ryazan State Radio Engineering University 2015; 4(54): 3-8.
  15. Parshin YuN, Grachev MV. Multi-stage reconfigurable signal processing in a spatially distributed radio system [In Russian]. Vestnik of Ryazan State Radio Engineering University 2019; 67: 3-10
  16. Yarbrough P, Welker T, Silva D, Islam R, Patamsetti VV, Abiona O. Analyzing Li-Fi communication benefits compared to Wi-Fi. Int J Commun Netw System Sci 2022; 15(6): 67-77. DOI: 10.4236/ijcns.2022.156006
  17. Haas H, et al. Visible-light communications and light fidelity. In Book: Willner AE, ed. Optical fiber telecommunications VII. Ch 11. London: Academic Press; 2020: 443-493. DOI: 10.1016/B978-0-12-816502-7.00013-0.
  18. Kühn V. Wireless communications over MIMO channels: Applications to CDMA and multiple antenna systems. Chichester: John Wiley & Sons Ltd; 2006. ISBN: 978-0-470-02716-5.
  19. Proakis J. Digital communication. 5th ed. New-York: McGraw-Hill; 2008. ISBN: 978-0-07-295716-7.
  20. Miramirkhani F, Uysal M. Channel modeling and characterization for visible light communications. IEEE Photonics J 2015; 7(6): 7905616. DOI: 10.1109/ JPHOT.2015.2504238.
  21. Gowar J. Optical communiction systems. London: Prentice-Hall; 1984. ISBN: 5-256-00113-2.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20