(49-2) 16 * << * >> * Русский * English * Содержание * Все выпуски

Определение параметров поверхностных дефектов основного металла трубопроводов по результатам комплексной диагностики
Н.В. Крысько 1, С.В. Скрынников 2, Н.А. Щипаков 1, Д.М. Козлов 1, А.Г. Кусый 1

Федеральное государственное бюджетное образовательное учреждение высшего образования
«Московский государственный технический университет имени Н.Э. Баумана
(национальный исследовательский университет)»,
105005, г. Москва, ул. Бауманская 2-я улица, д. 5, стр. 1;
ПАО «Газпром»,
117997, г. Москва, ул. Наметкина, д. 16, ГСП-7

  PDF, 2887 kB

DOI: 10.18287/2412-6179-CO-1437

Страницы: 311-319.

Аннотация:
Рассмотрены вопросы определения параметров поверхностных эксплуатационных дефектов по результатам комплексной диагностики ультразвуковым, вихретоковым и визуальным и измерительным методами неразрушающего контроля. При этом визуальный и измерительный метод реализовался с применением камеры телевизионного контроля, оснащенной функцией компьютерного зрения, и лазерным триангуляционным датчиком. В работе представлен набор данных, в котором в качестве входных переменных находятся результаты неразрушающего контроля, а в качестве целевых переменных – глубина плоскостных и объемных дефектов, а также ширина объемных дефектов. Также в работе произведена оценка степени влияния различных результатов неразрушающего контроля на определение целевых переменных. Произведено обучение моделей на основе различных алгоритмов, в итоге для всех целевых переменных оптимальными моделями оказались модели на основе градиентного бустинга. Представлен алгоритм совместной обработки результатов при комплексной диагностике, в котором применяются полученные модели, и определена точность работы данного алгоритма по метрике RMSE, которая составила 0,011 мм.

Ключевые слова:
поверхностные дефекты, ультразвуковой контроль, вихретоковый контроль, лазерное сканирование, комплексная диагностика, совместная оценка данных, машинное обучение, регрессия.

Цитирование:
Крысько, Н.В. Определение параметров поверхностных дефектов основного металла трубопроводов по результатам комплексной диагностики / Н.В. Крысько, С.В. Скрынников, Н.А. Щипаков, Д.М. Козлов А.Г. Кусый // Компьютерная оптика. – 2025. – Т. 49, № 2. – С. 311-319. – DOI: 10.18287/2412-6179-CO-1437.

Citation:
Krysko NV, Skrynnikov SV, Shchipakov NA, Kozlov DM, Kusyy AG. Determining parameters of surface defects in the base metal of pipelines using results of complex diagnostics. Computer Optics 2025; 49(2): 311-319. DOI: 10.18287/2412-6179-CO-1437.

References:

  1. Davydova DG. Defects in process pipelines: typology, assessment of the impact on operation [In Russian]. Prombezopasnost-Priuralye 2012; 8: 24-28.
  2. Yerekhinsky BA, Maslakov SV, Shustov NI, Mitrofanov AV, Baryshov SN, Zaryaev MYu, Kravtsov AV, Yegorov SV. Cracking of metal housings of Christmas-tree gate valves of northern fields gas producers [In Russian]. Territoria Neftegaz 2014; 2: 31-36.
  3. Safina IS, Kauzova PA, Gushchin DA. Assessment of the technical condition of vertical steel tanks [In Russian]. TehNadzor 2016; 3(112): 39-42.
  4. Butusov DS, Egorov SI, Zavyalov AP, Lyapichev DM. Stress corrosion cracking of gas pipelines: Textbook [In Russian]. Moscow: Publishing Center of the Russian State University of Oil and Gas named after I.M. Gubkin; 2015.
  5. Kalinichenko NP, Vasiliev MA. Atlas of defects in welded joints and base metal: teaching aid [In Russian]. Tomsk: Publishing House of Tomsk Polytechnic University; 2006. ISBN: 978-5-98298-908-6.
  6. Aleshin NP. Physical methods of non-destructive testing of welded joints: textbook [In Russian]. 2nd ed., revised and additional. Moscow: Innovative Engineering Publisher; 2019. ISBN: 978-5-94275-695-6.
  7. Hall DL, McMullen SAH. Mathematical techniques in multisensor data fusion. 2nd ed. Norwood, MA: Artech House Inc; 2004. ISBN: 978-1-58053-335-5.
  8. Meyer SL. Data analysis for scientists and engineers. Peer Management Consultants Ltd; 1992. ISBN: 978-0-9635027-0-4.
  9. Gros XE. NDT data fusion. London, UK: Arnold; 1997. ISBN: 978-0340676486.
  10. Gros XE. Applications of NDT data fusion. New York: Springer; 2001. ISBN: 978-0-7923-7412-1.
  11. Aleshin NP, Skrynnikov SV, Krysko NV, Shchipakov NA, Kusyy AG. Classification of surface defects in the base metal of pipelines based on complex diagnostics results. Computer Optics 2023; 47(1): 170-178. DOI: 10.18287/2412-6179-CO-1185.
  12. Aleshin NP, Krysko NV, Kusyy AG, Skrynnikov SV, Mogilner LY. Investigating the detectability of surface volumetric defects in ultrasonic testing with the use of rayleigh waves generated by an electromagnetic-acoustic transducer [In Russian]. Russian Journal of Nondestructive Testing 2021; 57(5): 361-368. DOI: 10.31857/S0130308221050031.
  13. Aleshin NP, Krysko NV, Skrynnikov SV, Kusyy AG. Studying detectability of plane surface defects by ultrasonic method using rayleigh waves [In Russian]. Russian Journal of Nondestructive Testing 2021; 57(6): 446-454. DOI: 10.31857/S0130308221060038.
  14. Ryakhovskikh IV, Kaverin AA, Petukhov IG, Lipovik AV, Selivanov AA, Sakhon AV. Estimation of the size of stress-corrosion defects during technical diagnostics of gas pipelines [In Russian]. Vesti Gazovoi Nauki 2020; 2(44): 4-14.
  15. Shlyakhtenkov SP, Bekher SA. Technology for estimating the depth of surface cracks in rails by eddy current method [In Russian]. Polytransport Systems: XI Int Scientific and Technical Conf, Novosibirsk 2020: 608-613.
  16. Alekhin SG, Samokrutov AA, Shevaldykin VG. Measuring the depth of stress-corrosion cracks in main gas pipelines [In Russian]. Vesti Gazovoi Nauki 2022; 1(50): 78-83.
  17. Shubochkin AE. Development and current state of the eddy current method of non-destructive testing: monograph [In Russian]. Moscow: Spektr Publishing House; 2014.
  18. SONAFLEX multipurpose test electronics unit. 2024. Source: <https://nordinkraft.de/sonaflex/>.
  19. Malashin I, Tynchenko V, Nelyub V, Borodulin A, Gantimurov A, Krysko N.V, Shchipakov NA, Kozlov DM, Kusyy AG, Martysyuk D. Galinovsky A. Deep Learning Approach for Pitting Corrosion Detection in Gas Pipelines. Sensors 2024, 24, 3563. https://doi.org/10.3390/s24113563.
  20. Krysko NV, Schipakov NA, Kozlov DM, Kusyy AG. Identification and localization of pitting corrosion on metallic surface using deep learning. CIS Iron and Steel Review; 27 (2024), pp. 96–102.
  21. Dodge Y. The concise encyclopedia of statistics. Springer Science+Business Media LLC; 2008. ISBN: 978-0-387-32833-1.
  22. Barker TB, Milivojevich A. Quality by experimental design. Boca Raton, FL: CRC Press, Taylor & Francis Group LLC; 2016. ISBN: 978-1-4822-4967-5.
  23. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20: 273-297. DOI: 10.1007/BF00994018.
  24. Rokach L, Maimon O. Decision trees. In Book: Maimon O, Rokach L, eds. Data mining and knowledge discovery handbook. New York, NY: Springer Science+Business Media Inc; 2005: 165-192. DOI: 10.1007/0-387-25465-X_9.
  25. Breiman L. Random forests. Mach Learn 2001; 45: 5-32. DOI: 10.1023/A:1010933404324.
  26. He Z, Lin D, Lau T, Wu M. Gradient boosting machine: A survey. arXiv Preprint. 2019. Source: <https://arxiv.org/abs/1908.06951>. DOI: 10.48550/arXiv.1908.06951.
  27. Murphy KP. Probabilistic machine learning. An introduction. Cambridge, MA: The MIT Press; 2022. ISBN: 9780262046824.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20