(49-2) 17 * << * >> * Русский * English * Содержание * Все выпуски

Алгоритм управления полетом БПЛА вдоль железной дороги с помощью технического зрения
А.О. Лебедев 1, В.В. Васильев 1, А.Г. Паулиш 1,2,3

Филиал Института физики полупроводников им. А. В. Ржанова СО РАН «КТИПМ»,
630090, Россия, г. Новосибирск, проспект Академика Лаврентьева, д. 2/1;
Новосибирский государственный технический университет,
630073, Россия, г. Новосибирск, проспект Карла Маркса, д. 20;
Новосибирский государственный университет,
630090, Россия, г. Новосибирск, ул. Пирогова, д. 2

  PDF, 3103 kB

DOI: 10.18287/2412-6179-CO-1532

Страницы: 320-326.

Аннотация:
В работе предложен алгоритм управления автономным полётом беспилотного летательного аппарата (БПЛА) вдоль железной дороги без участия оператора и без использования спутниковых навигационных систем, таких как GPS и ГЛОНАСС. Алгоритм создавался с целью дистанционной инспекции технического состояния железнодорожного полотна без вмешательства в движение поездов. Отсутствие оператора и спутниковых навигационных систем позволяет проводить инспекцию путей на больших расстояниях, не ограниченных дальностью действия связи с БПЛА, и в условиях внешних электромагнитных помех. Алгоритм основывается на использовании компьютерного зрения: определении местоположения рельсов на видеоизображении и выработке управляющих сигналов для управления тангажём, рысканием и креном БПЛА таким образом, чтобы удерживать изображение рельсов в середине видеокадра. Экспериментальные полёты БПЛА показали, что алгоритм надёжно определяет положение рельсов и удерживает полёт БПЛА вдоль железной дороги.

Ключевые слова:
беспилотный летательный аппарат, алгоритм управления автономным полётом, распознавание рельсов на видеоизображении железной дороги, контроль железной дороги, техническое зрение, информационно-управляющие системы.

Цитирование:
Лебедев, А.О. Алгоритм управления полетом БПЛА вдоль железной дороги с помощью технического зрения / А.О. Лебедев, В.В. Васильев, А.Г. Паулиш // Компьютерная оптика. – 2025. – Т. 49, № 2. – С. 320-326. – DOI: 10.18287/2412-6179-CO-1532.

Citation:
Lebedev AO, Vasilev VV, Paulish AG. Algorithm for UAV flight controlling along a railway using technical vision. Computer Optics 2025; 49(2): 320-326. DOI: 10.18287/2412-6179-CO-1532.

References:

  1. Boiko A. Robotrends. Areas of drone's application [In Russian]. 2024. Source: <http://robotrends.ru/robopedia/oblasti-primeneniya-bespilotnikov>.
  2. Drone usage is thriving in these three US states. 2023. Source: <https://www.businessinsider.com/drone-usage-is-thriving-in-these-three-us-states-2016-4>.
  3. Sudbury AW, Hutchinson EB. A cost analysis of amazon prime air (drone delivery). Journal for Economic Educators 2016; 16(1): 1-10.
  4. Lebedev AO, Vasil'ev VV. UAV control algorithm in automatic mode using computer vision. Optoelectron Instrum Data Process 2021; 57(4): 406-411. DOI: 10.3103/s8756699021040075.
  5. Ivanov YA. Development of a locomotive vision system [In Russian]. The thesis for the Candidate's degree in Technical Sciences. Moscow; 2015.
  6. Luque-Vega L, Castillo-Toledo B, Loukianov A, González-Jiménez L. Power line inspection via an unmanned aerial system based on the quadrotor helicopter. MELECON 2014 – 2014 17th IEEE Mediterranean Electrotechnical Conf 2014: 393-397. DOI: 10.1109/MELCON.2014.6820566.
  7. Gritsenko PA, Kremlev AS, Shmyhelskiy GM. Control of the movement of a quadrocopter along a prefaced trajectory [In Russian]. Nauchno-Tehnicheskii Vestnik Infjrmacionnyh Tekhnologii, Mehaniki i Optiki 2013; 4(86): 22-25.
  8. Karakose M, Yaman O, Baygin M, Murat K, Akin E. A new computer vision based method for rail track detection and fault diagnosis in railways. Int J Mech Eng Rob Res 2017; 6(1): 22-27. DOI: 10.18178/ijmerr.6.1.22-27.
  9. Besada J, Bergesio L, Campaña I, Vaquero-Melchor D, López-Araquistain J, Bernardos AM, Casar JR. Drone mission definition and implementation for automated infrastructure inspection using airborne sensors. Sensors 2018; 18(4): 1170. DOI: 10.3390/s18041170.
  10. Flammini F, Pragliola C, Smarra G. Railway infrastructure monitoring by drones. 2016 Int Conf on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & Int Transportation Electrification Conf (ESARS-ITEC) 2016: 1-6. DOI: 10.1109/ESARS-ITEC.2016.7841398.
  11. Mittal S, Rao D. Vision based railway track monitoring using deep learning. arXiv Preprint. 2024. Source: <https://arxiv.org/abs/1711.06423>. DOI: 10.48550/arXiv.1711.06423.
  12. Singha AK, Swarupa A, Agarwalb A, Singha D. Vision based rail track extraction and monitoring through drone imagery. ICT Express 2019; 5(4): 250-255. DOI: 10.1016/j.icte.2017.11.010.
  13. Jianfang L, Hao Z, Jingli G. A novel fast target tracking method for UAV aerial image. Open Phys 2017; 15(1): 420-426. DOI: 10.1515/phys-2017-0046.
  14. Engel J, Sturm J, Cremers D. Camera-based navigation of a low-cost quadrocopter. 2012 IEEE/RSJ Int Conf on Intelligent Robots and Systems 2012: 2815-2821. DOI: 10.1109/IROS.2012.6385458.
  15. Trinh H, Haas N, Li Y, Otto C, Pankanti S. Enhanced rail component detection and consolidation for rail track inspection. 2012 IEEE Workshop on the Applications of Computer Vision (WACV) 2012: 289-295. DOI: 10.1109/WACV.2012.6163021.
  16. Intelligent input bus. 2024. Source: <https://en.wikipedia.org/wiki/Intelligent_Input_Bus>.
  17. Flammini F, Gaglione A, Ottello F, Pappalardo A, Pragliola C, Tedesco A. Towards Wireless Sensor Networks for railway infrastructure monitoring. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS) 2010: 1-6. DOI: 10.1109/ESARS.2010.5665249.
  18. Banić M, Miltenović A, Pavlović M, Ćirić I. Intelligent machine vision based railway infrastructure inspection and monitoring using UAV. Facta Universitatis, Series: Mechanical Engineering 2019; 17(3): 357-364. DOI: 10.22190/FUME190507041B.
  19. Horn B. Robot vision. Cambridge, MA: MIT Press; 1986: Ch 8.
  20. Marr D. Vision. W. H. Freeman & Co Ltd; 1982: Ch 2. ISBN: 0-7167-1284-9.
  21. Vernon D. Machine vision: Automated visual inspection and robot vision. New York: Prentice Hall; 1991. ISBN: 0-13-543398-3.
  22. Jähne B., Scharr H., Körkel S., Jähne B., Haußecker H., Geißler P. Principles of filter design. Handbook of Computer Vision and Applications. vol. 2. Academic Press, 1999, pp. 125–151.
  23. Haralick RM, Shapiro LG. Computer robot vision. Vol 1. Addison-Wesley Publishing Company; 1992: 346-351.
  24. Railway detection sample. 2024. Source: <https://rutube.ru/video/private/9f975409200d95633e0d00eb32d11a37/?p=ec_a71mNidv0lmbprz-qtw>.
  25. Güçlü E, Aydın İ, Akın E. Fuzzy PID based autonomous UAV design for railway tracking. 2021 International Conference on Information Technology (ICIT) 2021: 456-461. DOI: 10.1109/ICIT52682.2021.9491687.
  26. Cuypers S, De Winter H, Bassier M, Vergauwen M. Planimetric rail positioning using UAV photogrammetry: Towards automated and safe railway infrastructure monitoring. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2023; XLVIII-1/W2-2023: 589-596. DOI: 10.5194/isprs-archives-XLVIII-1-W2-2023-589-2023.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20