(49-4) 03 * << * >> * Русский * English * Содержание * Все выпуски

Сравнение двух подходов к расчету интерференционных оптических элементов на фотонно-кристаллических структурах
Ю.Ю. Кривошеева 1, Д.Л. Головашкин 1,2, В.С. Павельев 1,2

Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34;
Институт систем обработки изображений, НИЦ «Курчатовский институт»,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151

  PDF, 1270 kB

DOI: 10.18287/2412-6179-CO-1603

Страницы: 549-559.

Аннотация:
На примерах таких фотонно-кристаллических интерференционных оптических элементов, как изгибы волноведущих структур, узел пересечения трех волноводов, узел ввода излучения, Y-образный логический элемент «НЕ» и логический элемент «НЕ» на кристалле с самоколлимацией, рассматриваются два подхода к расчету элементов интегральной оптики: методы безградиентной оптимизации (методы оптимизации нулевого порядка) и генетический алгоритм. Оба подхода используют решение прямой задачи дифракции FDTD-методом. Делаются выводы о возможности применения данных подходов к расчету фотонно-кристаллических оптических элементов: сравнение рассчитанных результатов по критерию эффективности демонстрирует преимущество авторского модифицированного генетического алгоритма по сравнению с методами покоординатного спуска и Хука–Дживса для элементов, в которых излучение распространяется не по прямолинейному пути, а для элементов, проводящих излучение по прямому волноводу, методы оптимизации нулевого порядка дают такую же эффективность, как и генетическая оптимизация (более 99 %), при этом вычислительная сложность данных методов ниже. Особое внимание уделяется рассмотрению метода «частичного перебора». На примере изгиба фотонно-кристаллического волновода на 120° показано, что рассчитанный данным методом элемент характеризуется передачей излучения практически без потерь, при этом вычислительная сложность расчета в 2 раза меньше, чем у генетического алгоритма.

Ключевые слова:
фотонные кристаллы, интерференционные оптические элементы, генетический алгоритм, методы оптимизации.

Благодарности
Работа проведена в рамках государственного задания НИЦ «Курчатовский институт».

Цитирование:
Кривошеева, Ю.Ю. Сравнение двух подходов к расчету интерференционных оптических элементов на фотонно-кристаллических структурах / Ю.Ю. Кривошеева, Д.Л. Головашкин, В.С. Павельев // Компьютерная оптика. – 2025. – Т. 49, № 4. – С. 549-559. – DOI: 10.18287/2412-6179-CO-1603.

Citation:
Krivosheeva YY, Golovashkin DL, Pavelyev VS. Comparison of two approaches to the design of interference optical elements on photonic crystal structures. Computer Optics 2025; 49(4): 549-559. DOI: 10.18287/2412-6179-CO-1603.

References:

  1. Ehsan V, Mahmood S, Saeed O. Design and numerical analysis of multifunctional photonic crystal logic gates. Opt Laser Technol 2022; 151(20): 108068. DOI: 10.1016/j.optlastec.2022.108068.
  2. Takiguchi M, Takemura N, Tateno K. All-optical InAsP/InP Nanowire Switches Integrated in a Si photonic crystal. ACS Photonics 2020; 7(4): 1016-1021. DOI: 10.1021/acsphotonics.9b01705.
  3. Foroughifar A, Saghaei H, Veisi E. Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt Quantum Electron 2021; 53(2): 101. DOI: 10.1007/s11082-021-02743-z.
  4. Heshmati MMK, Emami F. Optimized design and simulation of optical section in electro-reflective modulators based on photonic crystals integrated with multi-quantum-well structures. Optics 2023; 4(1): 227-245. DOI: 10.3390/opt4010016.
  5. Watanabe Y, Sugimoto Y, Ikeda N, Ozaki N, Mizutani A, Takata Y, Kitagawa Y, Asakawa K. Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by using topology optimization. Opt Express 2006; 14(20): 9502-9507. DOI: 10.1364/OE.14.009502.
  6. Watanabe Y, Ikeda N, Sugimoto Y, Takata Y. Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs. J Appl Phys 2007; 101(11): 113108. DOI: 10.1063/1.2739317.
  7. Shen B, Wang P, Polson R. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint. Nat Photonics 2015; 9: 378-382. DOI: 10.1038/nphoton.2015.80.
  8. Liyong J, Hong W, Wei J, Xiangyin L. Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Optik 2013; 124(14): 1721-1725. DOI: 10.1016/j.ijleo.2012.06.005.
  9. Liyong J, Haipeng L, Wei J, Xiangyin L, Zexiang S. Genetic optimization of photonic crystal waveguide termination for both on-axis and off-axis highly efficient directional emission. Opt Express 2009; 17(12): 10126-10135. DOI: 10.1364/OE.17.010126.
  10. Hang K, Pengcheng S, Peili L, Weihua S. Photonic crystal broadband y-shaped 1×2 beam splitter inversely designed by genetic algorithm. Opt Eng 2023; 62(6): 065106. DOI: 10.1117/1.OE.62.6.065106.
  11. Pevneva AG, Kalinkina ME. Optimization methods [In Russian]. Saint-Petersburg: “ITMO University” Publisher; 2020.
  12. Nelder JA, Mead R. A simplex method for function minimization. Comput J 1965; 7(4): 308-313. DOI: 10.1093/comjnl/7.4.308.
  13. McKinnon KIM. Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM J Optim 1998; 9(1): 148-158. DOI: 10.1137/S1052623496303482.
  14. Krivosheeva YY, Golovashkin DL. Design of waveguide photonic-crystal structures with bends using a genetic algorithm [In Russian]. Proc XVII Int Conf on Mathematical and Computer Modeling of Natural-Science and Social Problems, Penza, Russia, 1–4 June 2023: 151-156.
  15. Krivosheeva YY, Golovashkin DL, Pavelyev VS. Design of the intersection node of photonic crystal waveguides using a genetic algorithm. 2024 X Int Conf on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation 2024: 1-5. DOI: 10.1109/ITNT60778.2024.10582340.
  16. Pavelyev VS, Krivosheeva YY, Golovashkin DL. Genetic optimization of the y-shaped photonic crystal NOT logic gate. Photonics 2023; 10(10): 1173. DOI: 10.3390/photonics10101173.
  17. Sun X-W, Yang X-L, Meng X-F, Zhu J-N, Wang Y-R, Yin Y-K, Dong G-Y. Design and analysis of logic NOR, NAND and XNOR gates based on the interference effect. Quantum Electron 2018; 48(2): 178-183. DOI: 10.1070/QEL16452.
  18. Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Self-collimating phenomena in photonic crystals. Appl Phys Lett 1999; 74 (9): 1212-1214. DOI: 10.1063/1.123502.
  19. Johnson S, Manolatou C, Fan S, Villeneuve C, Joannopoulos J, Haus H. Elimination of cross talk in waveguide intersections. Opt Lett 1998; 23(23): 1855-1857. DOI: 10.1364/OL.23.001855.
  20. Gilarlue MM, Badri SH. Photonic crystal waveguide intersection design based on Maxwell’s fish-eye lens. Photonics Nanostruct Fundam Appl 2018; 31: 154-159. DOI: 10.1016/j.photonics.2018.08.001.
  21. Xue Y, Hu Y, Meng D. Design and research of logic gate based on photonic crystal self-collimation effect. Proc SPIE 2022; 12162: 1216203. DOI: 10.1117/12.2628068.
  22. Attetkov AV, Galkin SV, Zarubin VS. The Hook-Jeeves method: Optimization methods [In Russian]. Moscow: Publishing House of Bauman Moscow State Technical University; 2003.
  23. Brent RP. Algorithms for minimization without derivatives. Chap 4: An algorithm with guaranteed convergence for finding a zero of a function. Englewood Cliffs, NJ: Prentice-Hall; 1973. ISBN: 0-486-41998-3.
  24. Jebari K, Madiafi M, Elmoujahid A. Parent selection operators for genetic algorithms. Int J Eng Res Technol 2013; 2(11): 1141-1145.
  25. Soshnikov DV, Golovashkin DL, Pavelyev VS. Evaluation of the influence of technological manufacturing errors on the operation of photonic-crystal waveguides [In Russian]. Proc XVII Int Conf on Analytical and Numerical Methods of Modelling of Natural Science and Social Problems, Penza, Russia, 28 November–4 December 2022: 128-133.
  26. Pavelyev VS. Stochastic approach to quantized diffractive optical elements optimization [In Russian]. Izvestiya of Samara Scientific Center of the Russian Academy of Sciences 2002; 1: 61-67.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20