(49-4) 03 * << * >> * Russian * English * Content * All Issues

Comparison of two approaches to the design of interference optical elements on photonic crystal structures
Yu.Yu. Krivosheeva 1, D.L. Golovashkin 1,2, V.S. Pavelyev 1,2

Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34;
Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeyskaya 151

 PDF, 1270 kB

DOI: 10.18287/2412-6179-CO-1603

Pages: 549-559.

Full text of article: Russian language.

Abstract:
Using examples of photonic crystal interference optical elements such as bends of waveguide structures, an intersection of three waveguides, a radiation input node, a Y-shaped logical gate NOT, and a logical gate NOT on a crystal with self-collimation, we discuss two approaches to the synthesis of integrated optics elements: non-stochastic methods of gradient-free optimization (zero-order optimization methods) and a genetic algorithm. Both approaches involve solving the direct diffraction problem using the FDTD method. We conclude that these approaches are suited for designing photonic crystal optical elements: a comparison of the calculated results in terms of the efficiency criterion demonstrates an advantage of the author's modified genetic algorithm over the coordinate descent and Hooke-Jeeves methods for elements in which radiation does not propagate along a straight path. Meanwhile for elements that conduct radiation along a straight waveguide, zero-order optimization methods provide the same efficiency as genetic optimization (more than 99%), while the computational complexity of these methods is lower. Particular attention is paid to the analysis of the “partial enumeration” method. Using the example of a photonic crystal waveguide with a 120°-bending, it is shown that the element designed using this method is characterized by virtually lossless radiation transmission, while its computational complexity is 2 times lower than that of the genetic algorithm.

Keywords:
photonic crystals, interference optical elements, genetic algorithm, optimization methods.

Citation:
Krivosheeva YY, Golovashkin DL, Pavelyev VS. Comparison of two approaches to the design of interference optical elements on photonic crystal structures. Computer Optics 2025; 49(4): 549-559. DOI: 10.18287/2412-6179-CO-1603.

Acknowledgements:
The work was carried out within a government project of NRC "Kurchatov Institute".

References:

  1. Ehsan V, Mahmood S, Saeed O. Design and numerical analysis of multifunctional photonic crystal logic gates. Opt Laser Technol 2022; 151(20): 108068. DOI: 10.1016/j.optlastec.2022.108068.
  2. Takiguchi M, Takemura N, Tateno K. All-optical InAsP/InP Nanowire Switches Integrated in a Si photonic crystal. ACS Photonics 2020; 7(4): 1016-1021. DOI: 10.1021/acsphotonics.9b01705.
  3. Foroughifar A, Saghaei H, Veisi E. Design and analysis of a novel four-channel optical filter using ring resonators and line defects in photonic crystal microstructure. Opt Quantum Electron 2021; 53(2): 101. DOI: 10.1007/s11082-021-02743-z.
  4. Heshmati MMK, Emami F. Optimized design and simulation of optical section in electro-reflective modulators based on photonic crystals integrated with multi-quantum-well structures. Optics 2023; 4(1): 227-245. DOI: 10.3390/opt4010016.
  5. Watanabe Y, Sugimoto Y, Ikeda N, Ozaki N, Mizutani A, Takata Y, Kitagawa Y, Asakawa K. Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by using topology optimization. Opt Express 2006; 14(20): 9502-9507. DOI: 10.1364/OE.14.009502.
  6. Watanabe Y, Ikeda N, Sugimoto Y, Takata Y. Topology optimization of waveguide bends with wide, flat bandwidth in air-bridge-type photonic crystal slabs. J Appl Phys 2007; 101(11): 113108. DOI: 10.1063/1.2739317.
  7. Shen B, Wang P, Polson R. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm2 footprint. Nat Photonics 2015; 9: 378-382. DOI: 10.1038/nphoton.2015.80.
  8. Liyong J, Hong W, Wei J, Xiangyin L. Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Optik 2013; 124(14): 1721-1725. DOI: 10.1016/j.ijleo.2012.06.005.
  9. Liyong J, Haipeng L, Wei J, Xiangyin L, Zexiang S. Genetic optimization of photonic crystal waveguide termination for both on-axis and off-axis highly efficient directional emission. Opt Express 2009; 17(12): 10126-10135. DOI: 10.1364/OE.17.010126.
  10. Hang K, Pengcheng S, Peili L, Weihua S. Photonic crystal broadband y-shaped 1×2 beam splitter inversely designed by genetic algorithm. Opt Eng 2023; 62(6): 065106. DOI: 10.1117/1.OE.62.6.065106.
  11. Pevneva AG, Kalinkina ME. Optimization methods [In Russian]. Saint-Petersburg: “ITMO University” Publisher; 2020.
  12. Nelder JA, Mead R. A simplex method for function minimization. Comput J 1965; 7(4): 308-313. DOI: 10.1093/comjnl/7.4.308.
  13. McKinnon KIM. Convergence of the Nelder–Mead simplex method to a nonstationary point. SIAM J Optim 1998; 9(1): 148-158. DOI: 10.1137/S1052623496303482.
  14. Krivosheeva YY, Golovashkin DL. Design of waveguide photonic-crystal structures with bends using a genetic algorithm [In Russian]. Proc XVII Int Conf on Mathematical and Computer Modeling of Natural-Science and Social Problems, Penza, Russia, 1–4 June 2023: 151-156.
  15. Krivosheeva YY, Golovashkin DL, Pavelyev VS. Design of the intersection node of photonic crystal waveguides using a genetic algorithm. 2024 X Int Conf on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation 2024: 1-5. DOI: 10.1109/ITNT60778.2024.10582340.
  16. Pavelyev VS, Krivosheeva YY, Golovashkin DL. Genetic optimization of the y-shaped photonic crystal NOT logic gate. Photonics 2023; 10(10): 1173. DOI: 10.3390/photonics10101173.
  17. Sun X-W, Yang X-L, Meng X-F, Zhu J-N, Wang Y-R, Yin Y-K, Dong G-Y. Design and analysis of logic NOR, NAND and XNOR gates based on the interference effect. Quantum Electron 2018; 48(2): 178-183. DOI: 10.1070/QEL16452.
  18. Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Self-collimating phenomena in photonic crystals. Appl Phys Lett 1999; 74 (9): 1212-1214. DOI: 10.1063/1.123502.
  19. Johnson S, Manolatou C, Fan S, Villeneuve C, Joannopoulos J, Haus H. Elimination of cross talk in waveguide intersections. Opt Lett 1998; 23(23): 1855-1857. DOI: 10.1364/OL.23.001855.
  20. Gilarlue MM, Badri SH. Photonic crystal waveguide intersection design based on Maxwell’s fish-eye lens. Photonics Nanostruct Fundam Appl 2018; 31: 154-159. DOI: 10.1016/j.photonics.2018.08.001.
  21. Xue Y, Hu Y, Meng D. Design and research of logic gate based on photonic crystal self-collimation effect. Proc SPIE 2022; 12162: 1216203. DOI: 10.1117/12.2628068.
  22. Attetkov AV, Galkin SV, Zarubin VS. The Hook-Jeeves method: Optimization methods [In Russian]. Moscow: Publishing House of Bauman Moscow State Technical University; 2003.
  23. Brent RP. Algorithms for minimization without derivatives. Chap 4: An algorithm with guaranteed convergence for finding a zero of a function. Englewood Cliffs, NJ: Prentice-Hall; 1973. ISBN: 0-486-41998-3.
  24. Jebari K, Madiafi M, Elmoujahid A. Parent selection operators for genetic algorithms. Int J Eng Res Technol 2013; 2(11): 1141-1145.
  25. Soshnikov DV, Golovashkin DL, Pavelyev VS. Evaluation of the influence of technological manufacturing errors on the operation of photonic-crystal waveguides [In Russian]. Proc XVII Int Conf on Analytical and Numerical Methods of Modelling of Natural Science and Social Problems, Penza, Russia, 28 November–4 December 2022: 128-133.
  26. Pavelyev VS. Stochastic approach to quantized diffractive optical elements optimization [In Russian]. Izvestiya of Samara Scientific Center of the Russian Academy of Sciences 2002; 1: 61-67.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20