(49-4) 05 * << * >> * Русский * English * Содержание * Все выпуски
The features of the phase object visualization in the field of coherent laser radiation predicted in the first Rytov approximation
E.V. Parkevich 1, A.I. Khirianova 1, T.F. Khirianov 1, S.Y. Gavrilov 1
1 P.N. Lebedev Physical Institute of the Russian Academy of Sciences,
53 Leninskiy Prospekt, Moscow 119991, Russia
PDF, 5368 kB
DOI: 10.18287/2412-6179-CO-1608
Страницы: 566-572.
Язык статьи: English.
Аннотация:
We concern the problem of laser beam diffraction by a phase object with and without radiation absorption. In terms of a plane optical wave passing through the object, we solve the scalar Helmholtz wave equation in the first Rytov approximation and discuss the consequences of the equation obtained in such an approximation. By taking into account the wave diffraction spreading, numerous features of the phase object visualization in the field of coherent laser radiation are predicted. We reveal the fundamental relationships between the Fourier spectra of the object dielectric permittivity and diffracted wave characteristics described in terms of the wave intensity and phase shift in free space. The findings are of a general nature and can be useful in optical imaging of various objects.
Ключевые слова:
plane wave diffraction, first Rytov approximation, phase object, intensity, phase shift, direct diffraction problem.
Благодарности
The study was supported by the Russian Science Foundation (Grant No. 19-79-30086).
Citation:
Parkevich EV, Khirianova AI, Khirianov TF, Gavrilov SY. The features of the phase object visualization in the field of coherent laser radiation predicted in the first Rytov approximation. Computer Optics 2025; 49(4): 566-572. DOI: 10.18287/2412-6179-CO-1608.
References:
- Gizzi L, Galimberti M, Giulietti A, Giulietti D, Koester P, Labate L, Tomassini P, Martin P, Ceccotti T, De Oliveira P, Monot P. Femtosecond interferometry of propagation of a laminar ionization front in a gas. Phys Rev E 2006; 74(3pt2): 036403. DOI: 10.1103/PhysRevE.74.036403.
- Gopal A, Minardi S, Tatarakis M. Quantitative two-dimensional shadowgraphic method for highsensitivity density measurement of under-critical laser plasmas. Opt Lett 2007; 32(10): 1238-1240. DOI: 10.1364/OL.32.001238.
- Smaznova K, Khirianova A, Parkevich E, Medvedev M, Varaksina E, Khirianov T, Oginov A, Selyukov A. Precise optical registration of fine-structured electrical sparks and related challenges. Opt Express 2021; 29(22): 35806-35819. DOI: 10.1364/OE.431837.
- Huang S, Chen W, Fu Z, Fu Y, Xiang N, Qiu X, Shi W, Cheng D, Zhang Z. Separate luminous structures leading positive leader steps. Nat Commun 2022; 13: 3655. DOI: 10.1038/s41467-022-31409-x.
- Gregorčič P, Možina J. High-speed two-frame shadowgraphy for velocity measurements of laser-induced plasma and shock-wave evolution. Opt Lett 2011; 36(15): 2782-2784. DOI: 10.1364/OL.36.002782.
- Ahmad A, Dubey V, Singh G, Singh V, Mehta DS. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source. Opt Lett 2016; 41(7): 1554-1557. DOI: 10.1364/OL.41.001554.
- Raclavskỳ M., Rao K. H., Chaulagain U., et al. High-sensitivity optical tomography of instabilities in supersonic gas flow. Opt Lett 2024; 49(9): 2253-2256. DOI: 10.1364/OL.510289.
- Khalid S, Kappus B, Weninger K, Putterman S. Opacity and transport measurements reveal that dilute plasma models of sonoluminescence are not valid. Phys Rev Lett 2012; 108: 104302. DOI: 10.1103/PhysRevLett.108.104302.
- Bataller A, Putterman S, Pree S, Koulakis J. Observation of shell structure, electronic screening, and energetic limiting in sparks. Phys Rev Lett 2016; 117: 085001. DOI: 10.1103/PhysRevLett.117.085001.
- Kotlyar VV. Numerical solution of Maxwell’s equations in the diffractive optics problems. Computer Optics 2006; 29: 24-40.
- Tatarski VI. Wave propagation in a turbulent medium. Mineola, NY: Dover Publications Inc; 2016. ISBN: 978-0486810294.
- Kotlyar VV, Lichmanov MA. Analysis of light diffraction by microoptics elements using the integral equation solution by the finite element method, Computer Optics 2001; 21: 19-22.
- Kotlyar VV, Lichmanov MA. Electromagnetic wave diffraction on infinite circular cylinder with homogeneous layers. Computer Optics 2002; 24: 26-32.
- Kunitsyn VE. Diffraction tomograpny based on small-angle scattering data. Proc SPIE 1992; 1843: 172-182. DOI: 10.1117/12.131890.
- Marks DL. A family of approximations spanning the born and rytov scattering series. Opt Express 2006; 14(19): 8837-8848. DOI: 10.1364/OE.14.008837.
- Krehl J, Lubk A. Rytov approximation in electron scattering. Phys Rev B 2017; 95: 245106. DOI: 10.1103/PhysRevB.95.245106.
- Rajan SD, Frisk GV. A comparison between the born and rytov approximations for the inverse backscattering problem. Geophysics 1989; 54(7): 806-932. DOI: 10.1190/1.1442715.
- Kechribaris C, Nikita K, Uzunoglu N. Reconstruction of two-dimensional permittivity distribution using an improved rytov approximation and nonlinear optimization. J Electromagn Waves Appl 2012; 17(2): 183-207. DOI: 10.1163/156939303322235789.
- Chen B, Stamnes JJ. Validity of diffraction tomography based on the first born and the first rytov approximations, Appl Opt 1998; 37(14): 2996-3006. DOI: 10.1364/AO.37.002996.
- Gureyev TE, Davis TJ, Pogany A, Mayo SC, Wilkins SW. Optical phase retrieval by use of first born- and rytov-type approximations. Appl Opt 2004; 43(12): 2418-2430. DOI: 10.1364/AO.43.002418.
- Sung Y, Barbastathis G. Rytov approximation for x-ray phase imaging. Opt Express 2013; 21(3): 2674-2682. DOI: 10.1364/OE.21.002674.
- Potvin G. General rytov approximation. J Opt Soc Am A 2015; 32(10): 1848-1856. DOI: 10.1364/JOSAA.32.001848.
- Chaumet PC, Sentenac A, Zhang T. Reflection and transmission by large inhomogeneous media. Validity of born, rytov and beam propagation methods. J Quant Spectrosc Radiat Transf 2020; 243: 106816. DOI: 10.1016/j.jqsrt.2019.106816.
- Müller P. Optical diffraction tomography for single cells. Doctoral Thesis. Leipzig; 2016.
- Fan S, Smith-Dryden S, Zhao J, et al. Optical fiber refractive index profiling by iterative optical diffraction tomography. J Lightw Technol 2018; 36(24): 5754-5763. DOI: 10.1109/JLT.2018.2876070.
- Parkevich E, Khirianova A, Khirianov T, et al. Strong diffraction effects accompany the transmission of a laser beam through inhomogeneous plasma microstructures. Phys Rev E 2024; 109: 055204. DOI: 10.1103/PhysRevE.109.055204.
- Joshi C. The nonlinear optics of plasmas. Physica Scripta 1990; 1990(T30): 90. DOI: 10.1088/0031-8949/1990/T30/013.
- Rytov SM, Kravtsov YA, Tatarskii VI. Principles of statistical radiophysics 1. Berlin, Heidelberg: Springer-Verlag; 1987. ISBN: 978-3-642-69203-1.
- Parkevich EV, Medvedev MA, Ivanenkov GV, et al. Fast fine-scale spark filamentation and its effect on the spark resistance. Plasma Sources Sci Technol 2019; 28(9): 095003. DOI: 10.1088/1361-6595/ab3768.
- Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972; 35: 237-246.
- Abbey B, Nugent KA, Williams GJ, et al. Keyhole coherent diffractive imaging. Nat Phys 2008; 4: 394-398. DOI: 10.1038/nphys896.
- Popov NL, Artyukov IA, Vinogradov AV, Protopopov VV. Wave packet in the phase problem in optics and ptychography. Physics–Uspekhi 2020; 63(8): 766. DOI: 10.3367/UFNe.2020.05.038775.
- Parkevich E, Khirianova A, Khirianov T, et al. An efficient method for determining the output plane of a small-sized phase object in application to its image processing. J Russ Laser Res 2023; 44: 566-575. DOI: 10.1007/s10946-023-10164-4.
- Goodman JW. Introduction to Fourier optics. 3rd ed. Englewood, Colorado: Roberts & Company Publishers; 2005. ISBN: 0-9747077-2-4.
- Bockasten K. Transformation of observed radiances into radial distribution of the emission of a plasma. J Opt Soc Am 1961; 51(9): 943-947. DOI: 10.1364/JOSA.51.000943.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20