(49-4) 06 * << * >> * Русский * English * Содержание * Все выпуски
Accelerated algorithm for calculating spectra of aperiodic gratings
L.L. Frumin 1, A.E. Chernyavsky 1,2
1 Institute of Automation and Electrometry SB RAS,
630090, Russia, Novosibirsk, Academician Koptyug Avenue, 1;
2 Novosibirsk State University,
630090, Russia, Novosibirsk, Pirogov Street, 2
PDF, 837 kB
DOI: 10.18 287/2412-6179-CO-1594
Страницы: 573-578.
Язык статьи: English.
Аннотация:
To compute the spectrum of aperiodic Bragg gratings, we address a direct scattering problem for the Helmholtz equation. Numerically, this problem necessitates the calculation of transfer matrix products, which involves multiple multiplications of matrix elements – polynomials that depend on the spectral parameter of the problem. We propose an accelerated algorithm to solve the scattering problem with second-order accuracy. This algorithm leverages the integral approach for discretization, a duplication strategy, the convolution theorem, and the fast Fourier transform. The computational complexity of this approach is asymptotically O(N log2N) arithmetic operations (multiplications) for a discrete grid of size N. Numerical simulations corroborate the algorithm’s second-order accuracy and its high computational speed, in accordance with the estimates obtained.
Ключевые слова:
aperiodic gratings, scattering problem, algorithm, transfer matrix.
Благодарности
This work was supported by the Russian Science Foundation (project No. 24-22-00183). The authors are grateful to Professor D.A. Shapiro and Professor V.P. Il’in for their interest in the work and useful discussions.
Citation:
Frumin LL, Chernyavsky AE. Accelerated algorithm for calculating spectra of aperiodic gratings. Computer Optics 2025; 49(4): 573-578. DOI: 10.18 287/2412-6179-CO-1594.
References:
- Born M, Wolf E. Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 0-521-64222-1.
- Yeh P. Optical waves in layered media. 2nd ed. New York: Wiley Publisher; 2005. ISBN: 978-0471731924.
- Kashyap R. Fiber Bragg gratings. 2nd ed. New York: Academic Press; 2009. ISBN: 978-0080919911.
- Theodosiou A. Recent advances in fiber Bragg grating sensing. Sensors 2024; 24(2): 532. DOI: 10.3390/s24020532.
- Vasil’ev SA, Medvedkov OI, Korolev IG, Bozhkov AS, Kurkov AS, Dianov EM. Fibre gratings and their applications. Quantum Electron 2005; 35(12): 1085-1103. DOI 10.1070/QE2005v035n12ABEH013041.
- Butov OV, Tomyshev KA, Nechepurenko IA, Dorofeenko AV, Nikitov SA. Tilted fiber Bragg gratings and their sensing applications. Physics–Uspekhi 2022; 65(12): 1290-1302. DOI: 10.3367/UFNe.2021.09.039070.
- Tosi D. Review of chirped fiber Bragg grating (CFBG) fiber-optic sensors and their applications. Sensors 2018; 18(7): 2147. DOI: 10.3390/s18072147.
- Pen EF, Rodionov MY, Chubakov PA. Spectral properties of a cascade of holographic reflection gratings separated by a uniform layer. Optoelectron Instrum Data Proc 2017; 53(1): 59-67. DOI: 10.3103/S8756699017010095.
- Belai OV, Frumin LL, Podivilov EV, Shapiro DA. Inverse scattering problem for gratings with deep modulation. Laser Phys 2010; 20(2): 318-324. DOI: 10.1134/S1054660X10030023.
- Frumin LL, Belai OV, Podivilov EV, Shapiro DA. Efficient numerical method for solving the direct Zakharov–Shabat scattering problem. J Opt Soc Am B 2015; 32(2): 290-296. DOI: 10.1364/JOSAB.32.000290.
- Il’in VP. Methods of finite differences and finite volumes for elliptic equations [In Russian]. Novosibirsk: IVMiMG Publisher; 2001. ISBN: 5-86134-087-0.
- Blahut RE. Fast algorithms for signal processing. Cambridge: Cambridge University Press; 2010. ISBN: 1-13948-795-7.
- Rautian SG. Introduction to physical optics. Moscow: LIBRICOM Publisher; 2003. ISBN: 978-5-397-00804-4.
- Belai OV, Frumin LL, Podivilov EV, Shapiro DA. Inverse scattering for the one-dimensional Helmholtz equation: Fast numerical method. Opt Lett 2008; 33(18): 2101-2103. DOI: 10.1364/OL.33.002101.
- Gorbenko NI, Il’in VP, Frumin LL. Calculation of light scattering on a Bragg grating by recursion of transfer matrices on a nonuniform grid. Optoelectron Instrum Data Proc 2019; 55(1): 32-40. DOI: /10.3103/S8756699019010060.
- Wahls S, Poor HV. Introducing the fast nonlinear Fourier transform. 2013 IEEE Int Conf on Acoustics, Speech and Signal Processing 2013: 5780-5784. DOI: 10.1109/ICASSP.2013.6638772.
- Shapiro DA. Family of exact solutions for reflection spectrum of Bragg grating. Opt Commun 2003; 215: 295-301. DOI: 10.1016/S0030-4018(02)02233-2.
- Belai OV, Podivilov EV, Frumin LL, Shapiro DA. Inverse scattering problem for the wave equation in a one-dimensional inhomogeneous medium. Optoelectron Instrum Data Proc 2009; 45(6): 546-553. DOI: 10.3103/S8756699009060090.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20