(49-4) 11 * << * >> * Русский * English * Содержание * Все выпуски

A methodology for automated labelling a geospatial image dataset of applicable locations for installing a wireless nodal seismic system
M.Y. Uzdiaev 1, M.A. Astapova 1, A.L. Ronzhin 1, A.I. Saveliev 1, V.M. Agafonov 2, G.N. Erokhin 3, V.A. Nenashev 4

St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS),
St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences,
39, 14th Line, St. Petersburg, 199178, Russia;
LLC R-Sensors,
4, str. 1, Likhachevsky pr., Dolgoprudny, Moscow region, 141701, Russia;
Immanuel Kant Baltic Federal University, Research Institute of Applied Informatics and Mathematical Geophysics,
14, A. Nevskogo st., Kaliningrad, 236041, Russia;
St. Petersburg State University of Aerospace Instrumentation,
67, Bolshaya Morskaia st., St. Petersburg, 190000, Russia

  PDF, 1837 kB

DOI: 10.18287/2412-6179-CO-1492

Страницы: 634-646.

Язык статьи: English.

Аннотация:
A developing area of wireless nodal seismic systems installation rises an urgent problem of identification of applicable areas for mounting wireless seismic modules. The identification of applicable areas could be done using geospatial image analysis methods, which require representative datasets that reflect proper features of the surfaces related exactly to the requirements of seismic module installation. This states the problem of development of a methodology for labelling such datasets. This work is devoted to developing methodology for automated labelling of geospatial images using georeferece data from OpenStreetMap that provides accurate vector georeferences of distinct objects, however, suffer from class labels inconsistence (labelling the same object by multiple classes, labelling mistakes, objects overlapping). The distinctive features of the methodology are the development of system of surface classes specific to the properties of applicable surfaces for seismic modules installation and mapping procedure of OSM objects to the developed classification classes based on manual inspection of the OSM objects. The other features of the methodology are data representativeness in terms of geography, obtaining time, as well as maintaining the same lightning conditions. The collected according to the methodology dataset consists of 200 labelled images. The mapping procedure allows avoiding collisions in classes’ labels caused by OSM class hierarchy inconsistency. OSM labels covers 90% of the obtained images.

Ключевые слова:
seismic survey; satellite imagery; georeferenced data; dataset labelling; openstreetmap; Sentinel-2.

Благодарности
The study was supported by the Russian Science Foundation grant No. 22-69-00231, https://rscf.ru/en/project/22-69-00231/.

Citation:
Uzdiaev MY, Astapova MA, Ronzhin AL, Saveliev AI, Agafonov VM, Erokhin GN, Nenashev VA. A methodology for automated labelling a geospatial image dataset of applicable locations for installing a wireless nodal seismic system. Computer Optics 2025; 49(4): 634-646. DOI: 10.18287/2412-6179-CO-1492.

References:

  1. Malehmir A, Durrheim R, Bellefleur G, Urosevic M, Juhlin C, White DJ, Campbell G. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future. Geophysics 2012; 77(5): WC173-WC190. DOI: 10.1190/geo2012-0028.1.
  2. Manzi M, Malehmir A, Durrheim R. The value of seismics in mineral exploration and mine safety. 81st EAGE Conf and Exhibition 2019; 2019: 1-5. DOI: 10.3997/2214-4609.201901667.
  3. Heinonen S, Malinowski M, Hloušek F, Gislason G, Buske S, Koivisto E, Wojdyla M. Cost-effective seismic exploration: 2D reflection imaging at the Kylylahti massive sulfide deposit, Finland. Minerals 2019; 9(5): 263. DOI: 10.3390/min9050263.
  4. Patanè D, Tusa G, Yang W, Astuti A, Colino A, Costanza A, Torrisi O. The Urban Seismic Observatory of Catania (Italy): A real-time seismic monitoring at urban scale. Remote Sens 2022; 14(11): 2583. DOI: 10.3390/rs14112583.
  5. Antonovskaya GN, Kapustyan NK, Rogozhin EA. Seismic monitoring of industrial facilities: problems and solutions. Seismic Instruments 2015; 51(1): 5-15. DOI: 10.3103/S0747923916010011.
  6. Butenweg C. Seismic design and evaluation of industrial facilities. In Book: Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology – Bucharest, 2022. Cham: Springer International Publishing; 2022: 449-464. DOI: 10.1007/978-3-031-15104-0_27.
  7. Tabandeh A, Sharma N, Gardoni P. Seismic risk and resilience analysis of networked industrial facilities. Bull Earthq Eng 2023; 22(1): 255-276. DOI: 10.1007/s10518-023-01728-5.
  8. Dolce M, Nicoletti M, De Sortis A, Marchesini S, Spina D, Talanas F. Osservatorio sismico delle strutture: the Italian structural seismic monitoring network. Bull Earthq Eng 2017; 15(2): 621-641. DOI: 10.1007/s10518-015-9738-x.
  9. Oliveira S, Alegre A, Carvalho E, Mendes P, Proença J. Seismic and structural health monitoring systems for large dams: theoretical, computational and practical innovations. Bull Earthq Eng 2022; 20(9): 4483-4512. DOI: 10.1007/s10518-022-01392-1.
  10. Nguyen DD, Park D, Shamsher S, Nguyen VQ, Lee TH. Seismic vulnerability assessment of rectangular cut-and-cover subway tunnels. Tunn Undergr Space Technol 2019; 86: 247-261. DOI: 10.1016/j.tust.2019.01.021.
  11. Martínez K, Mendoza JA. Urban seismic site investigations for a new metro in central Copenhagen: Near surface imaging using reflection, refraction and VSP methods. Phys. Chem. Earth Parts A/B/C 2011; 36(16): 1228-1236. DOI: 10.1016/j.pce.2011.01.003.
  12. Karapetyan J, Li L, Geodakyan E, Yuan S, Karapetyan R. Site survey and assessment for the planned seismogeodynamic monitoring network in the Republic of Armenia. Earthq Sci 2022; 35(6): 510-518. DOI: 10.1016/j.eqs.2022.12.004.
  13. Anikonov IIE, Bubnov BA, Erokhin GN. Inverse and ill-posed sources problems, Utrecht, The Netherlands: VSP BV; 1997. ISBN: 90-6764-273-8.
  14. Popovici AM, Sturzu I, Moser TJ. High resolution diffraction imaging of small-scale fractures in shale and carbonate reservoirs. SPE/AAPG/SEG Unconventional Resources Technology Conference 2015: URTEC-2153238. DOI: 10.15530/URTEC-2015-2153238.
  15. Xie XB, Wu RS. Extracting angle domain information from migrated wavefield. SEG Technical Program Expanded Abstracts 2002: 2478. DOI: 10.1190/1.1816910.
  16. Root ʼt TJPMO, Stolk CC, de Hoop MV. Linearized inverse scattering based on seismic reverse time migration. Journal de Mathématiques Pures et Appliquées 2012; 98(2): 211-238. DOI: 10.1016/j.matpur.2012.02.009.
  17. Xie XB. An angle-domain wavenumber filter for multi-scale full-waveform inversion. SEG Technical Program Expanded Abstracts 2015: 5634. DOI: 10.1190/segam2015-5877023.1.
  18. Whitmore ND, Crawley S. Applications of RTM inverse scattering imaging conditions. SEG Technical Program Expanded Abstracts 2012: 4609. DOI: 10.1190/segam2012-0779.1.
  19. Alkhalifah T. Scattering-angle based filtering of the waveform inversion gradients. Geophys J Int 2014; 200(1): 363-373. DOI: 10.1093/gji/ggu379.
  20. Biondi BL. 3D seismic imaging. Tulsa, Oklahoma, USA: Society of Exploration Geophysicists; 2006. ISBN: 0-931830-46-X.
  21. Koren Z, Ravve I. Full-azimuth subsurface angle domain wavefield decomposition and imaging Part I: Directional and reflection image gathers. Geophysics 2011; 76(1): 1JF-Z19. DOI: 10.1190/1.3511352.
  22. Ren L, Liu G, Meng X, Wang J, Zhang S. Suppressing artifacts in 2D RTM using the Poynting vector. Near Surface Geophysics Asia Pacific Conf 2013: 484-487. DOI: 10.1190/nsgapc2013-112.
  23. Active geophone MTSS-1001 [In Russian]. 2025. Source: <https://r-sensors.ru/ru/products/geophones/MTSS-1003-rus/>.
  24. Gorchakov IV, Neeshpapa AV, Antonov AN, Avdyukhina SYu, Saveliev AI, Sergeev SN. Small-sized radio electronic digital module for building a nodal seismic system interacting with a uav [In Russian]. Journal of Radio Electronics 2023; 12. Source: <http://jre.cplire.ru/jre/dec23/14/text.pdf>. DOI: 10.30898/1684-1719.2023.12.14.
  25. ISO 19157-1:2023. Geographic information – Data quality – Part 1: General requirements. Vernier, Geneva, Switzerland: ISO; 2023.
  26. GOST R 59897-2021. Data for artificial intelligence systems in education. Requirements for the collection, storage, processing, transmission and protection of data [In Russian]. Moscow: "Izdateljstvo standartov" Publisher; 2021.
  27. OpenStreetMap. 2025. Source: <https://www.openstreetmap.org>.
  28. WikiMapia. 2023. Source: <http://wikimapia.org>.
  29. Goggle Maps. 2025. Source: <https://www.google.com/maps/>.
  30. Yandex Maps. 2025. Source: <https://yandex.ru/maps>.
  31. Sudarshan SK, Huang L, Li C, Stewart R, Becker AT. Seismic surveying with drone-mounted geophones. IEEE Int Conf on Automation Science and Engineering (CASE) 2016: 1354-1359. DOI: 10.1109/COASE.2016.7743566.
  32. Greenwood W, Zhou H, Lynch JP, Zekkos D. UAV-deployed impulsive source localization with sensor network. Adv Sci Technol 2017; 101: 104-111. DOI: 10.4028/www.scientific.net/AST.101.104.
  33. Yashin G, Mikhailovskiy N, Serpiva V, Egorov A, Golikov P. Autonomous flying robot for the seismic exploration. 22nd Int Conf on Control, Automation and Systems (ICCAS) 2022: 863-868. DOI: 10.23919/ICCAS55662.2022.10003772.
  34. Reddy VA, Stüber GL, Al-Dharrab S, Muqaibel AH, Mesbah W. Wireless backhaul strategies for real-time high-density seismic acquisition. IEEE Wireless Communications and Networking Conf (WCNC) 2020: 1-7. DOI: 10.1109/WCNC45663.2020.9120653.
  35. Iakovlev R, Lebedeva V, Egorov I, Bryksin V, Ronzhin A. Method for searching deployment zones of ground seismic sensors by a heterogeneous group of UAVs in an environment with a complex topography. In Book: Ronzhin A, Pshikhopov V, eds. Frontiers in robotics and electromechanics. Singapore: Springer Nature Singapore; 2023: 343-358. DOI: 10.1007/978-981-19-7685-8_22.
  36. Vasunina Y, Anikin D, Saveliev A. Algorithm of UAV trajectory creation for data collecting from seismological sensors. 2023 Int Russian Automation Conf (RusAutoCon) 2023: 747-752. DOI: 10.1109/RusAutoCon58002.2023.10272909.
  37. Astapova M, Uzdiaev M. Classification and segmentation of agricultural land using linear discriminant analysis for soil sensors installation. In Book: Ronzhin A, Kostyaev A, eds. Agriculture digitalization and organic production. Proceedings of the Third International Conference on Agriculture Digitalization and Organic Production (ADOP 2023), St. Petersburg, Russia, June 05-07, 2023. Singapore: Springer Nature Singapore Pte Ltd; 2023: 247-256. DOI: 10.1007/978-981-99-4165-0_23.
  38. Potnis AV, Shinde RC, Durbha SS, Kurte KR. Multi-class segmentation of urban floods from multispectral imagery using deep learning. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium 2019: 9741-9744. DOI: 10.1109/IGARSS.2019.8900250.
  39. Gonçalves BC, Lynch HJ. Fine-scale sea ice segmentation for high-resolution satellite imagery with weakly-supervised CNNs. Remote Sens 2021; 13(18): 3562. DOI: 10.3390/rs13183562.
  40. Weikmann G, Paris C, Bruzzone L. Timesen2crop: A million labeled samples dataset of sentinel 2 image time series for crop-type classification. IEEE J Sel Top Appl Earth Obs Remote Sens 2021; 14: 4699-4708. DOI: 10.1109/JSTARS.2021.3073965.
  41. Pan L, Xia H, Zhao X, Guo Y, Qin Y. Mapping winter crops using a phenology algorithm, time-series Sentinel-2 and Landsat-7/8 images, and Google Earth Engine. Remote Sens 2021; 13(13): 2510. DOI: 10.3390/rs13132510.
  42. Pyo J, Han KJ, Cho Y, Kim D, Jin D. Generalization of U-Net semantic segmentation for forest change detection in South Korea using airborne imagery. Forests 2022; 13(12): 2170. DOI: 10.3390/f13122170.
  43. Seale C, Redfern T, Chatfield P, Luo C, Dempsey K. Coastline detection in satellite imagery: A deep learning approach on new benchmark data. Remote Sens Environm 2022; 278: 113044. DOI: 10.1016/j.rse.2022.113044.
  44. Malczewska A, Malczewski J, Hejmanowska B. Challenges in preparing datasets for super-resolution on the example of sentinel-2 and planet scope images. Int Arch Photogramm Remote Sens Spat Inf Sci 2023; 48: 91-98. DOI: 10.5194/isprs-archives-XLVIII-1-W3-2023-91-2023.
  45. Tripp HL, Crosman ET, Johnson JB, Rogers WJ, Howell NL. The feasibility of monitoring Great Plains playa inundation with the Sentinel 2A/B satellites for ecological and hydrological applications. Water 2022; 14(15): 2314. DOI: 10.3390/w14152314.
  46. Rusin DS, Alekhina AE, Safonova AN, Dmitriev EV. Using deep learning algorithms for texture segmentation of ultra-high resolution satellite images [In Russian]. Regional Problems of Remote Sensing of the Earth 2021: 114-118.
  47. Grinberger AY, Schott M, Raifer M, Zipf A. An analysis of the spatial and temporal distribution of large-scale data production events in OpenStreetMap. Transactions in GIS 2021; 25(2): 622-641. DOI: 10.1111/tgis.12746.
  48. Marsoner T, Simion H, Giombini V, Egarter Vigl L, Candiago S. A detailed land use/land cover map for the European Alps macro region. Sci Data 2023; 10(1): 468. DOI: 10.1038/s41597-023-02344-3.
  49. Fonte CC, Martinho N. Assessing the applicability of OpenStreetMap data to assist the validation of land use/land cover maps. Int J Geogr Inf Sci 2017; 31(12): 2382-2400. DOI: 10.1080/13658816.2017.1358814.
  50. Patriarca J, Fonte CC, Estima J, de Almeida JP, Cardoso A. Automatic conversion of OSM data into LULC maps: comparing FOSS4G based approaches towards an enhanced performance. Open Geospat Data, Softw Stand 2019; 4(1): 11. DOI: 10.1186/s40965-019-0070-2.
  51. Li H, Zech J, Hong D, Ghamisi P, Schultz M, Zipf A. Leveraging openstreetmap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection. Int J Appl Earth Obs Geoinf 2022; 110: 102804. DOI: 10.1016/j.jag.2022.102804.
  52. Grippa T, Georganos S, Zarougui S, Bognounou P, Diboulo E, Forget Y, Wolff E. Mapping urban land use at street block level using openstreetmap, remote sensing data, and spatial metrics. ISPRS Int J Geo-Inf 2018; 7(7): 246. DOI: 10.3390/ijgi7070246.
  53. Ludwig C, Hecht R, Lautenbach S, Schorcht M, Zipf A. Mapping public urban green spaces based on OpenStreetMap and Sentinel-2 imagery using belief functions. ISPRS Int J Geo-Inf 2021; 10(4): 251. DOI: 10.3390/ijgi10040251.
  54. Xie X, Zhou Y, Xu Y, Hu Y, Wu C. OpenStreetMap data quality assessment via deep learning and remote sensing imagery. IEEE Access 2019; 7: 176884-176895. DOI: 10.1109/ACCESS.2019.2957825.
  55. Li W, He C, Fang J, Zheng J, Fu H, Yu L. Semantic segmentation-based building footprint extraction using very high-resolution satellite images and multi-source GIS data. Remote Sens 2019; 11(4): 403. DOI: 10.3390/rs11040403.
  56. Li H, Zipf A. A conceptual model for converting openstreetmap contribution to geospatial machine learning training data. Int Arch Photogramm Remote Sens Spat Inf Sci 2022; 43: 253-259. DOI: 10.5194/isprs-archives-XLIII-B4-2022-253-2022.
  57. Johnson N, Treible W, Crispell D. Opensentinelmap: A large-scale land use dataset using openstreetmap and sentinel-2 imagery. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition (CVPR) 2022: 1333-1341. DOI: 10.1109/CVPRW56347.2022.00139.
  58. Active geophone MTSS-1003. 2025. Source: <https://r-sensors.ru/ru/products/geophones/MTSS-1003-rus/>.
  59. Map features. 2025. Source: <https://wiki.openstreetmap.org/wiki/Map_features>.
  60. Key:natural. 2025. Source: <https://wiki.openstreetmap.org/wiki/Natural>.
  61. Overpass API. 2025. Source: <http://overpass-api.de/>.
  62. Node. 2025. Source: <https://wiki.openstreetmap.org/wiki/Node>.
  63. Way. 2025. Source: <https://wiki.openstreetmap.org/wiki/Way#Open_way_(open_polyline)>.
  64. Area. 2025. Source: <https://wiki.openstreetmap.org/wiki/Area>.
  65. Sentinel Hub. EO Browser. 2025. Source: <https://apps.sentinel-hub.com/eo-browser>.
  66. Sentinel Hub. API Reference (1.0.0). 2025. Source: <https://docs.sentinel-hub.com/api/latest/reference/>.
  67. Sentinel Hub. Pricing Plans and Packages. 2025. Source: <https://www.sentinel-hub.com/pricing>.
  68. Sentinel Hub. Home/FAQ. General. 2025. Source: <https://www.sentinel-hub.com/faq/#which-typical-conversions-between-processing-units-and-km>.
  69. ERSI. ArcGIS Pro. MGRS grids. 2025. Source: <https://pro.arcgis.com/en/pro-app/latest/help/layouts/mgrs-grids.htm>.
  70. Agafonov VM, Bugaev AS, Erokhin GN, Ronzhin AL. Vector-based seismic decomposition by reverse time methods. Russ J Earth Sci 2023; 23(3): ES3010. DOI: 10.2205/2023ES000837.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20