(49-6) 29 * << * >> * Русский * English * Содержание * Все выпуски

AlphaDent: A dataset for automated tooth pathology detection
E.I. Sosnin 1, Y.L. Vasil’ev 1, R.A. Solovyev 2, A.L. Stempkovskiy 2, D.V. Telpukhov 2, A.A. Vasil’ev 2, A.A. Amerikanov 3, A.Y. Romanov 3

Sechenov University,
Bolshaya Pirogovskaya Ulitsa, 2, Building 4, Moscow, 119991, Russia;
AlphaChip LLC,
Zelenograd building 438A, Moscow, 124498, Russia;
HSE University,
20 Myasnitskaya Ulitsa, Moscow, 101000, Russia

  PDF, 2297 kB

DOI: 10.18287/COJ1802

Страницы: 1129-1137.

Язык статьи: English.

Аннотация:
In this article, we present a new unique dataset for dental research – AlphaDent. This dataset is based on the DSLR camera photographs of the teeth of 295 patients and contains over 1200 images. The dataset is labeled for solving the instance segmentation problem and is divided into 9 classes. The article provides a detailed description of the dataset and the labeling format. The article also provides the details of the experiment on neural network training for the Instance Segmentation problem using this dataset. The results obtained show high quality of predictions. The dataset is published under an open license; and the training/inference code and model weights are also available under open licenses.

Ключевые слова:
tooth segmentation, dataset for dental research, artificial intelligence, instance segmentation.

Citation:
Sosnin EI, Vasil’ev YL, Solovyev RA, Stempkovskiy AL, Telpukhov DV, Vasil’ev AA, Amerikanov AA, Romanov AY. AlphaDent: A dataset for automated tooth pathology detection. Computer Optics 2025; 49(6): 1129-1137. DOI: 10.18287/COJ1802.

References:

  1. Uribe SE, Issa J, Sohrabniya F, Denny A, Kim NN, Dayo AF, Chaurasia A, Sofi-Mahmudi A, Büttner M, Schwendicke F. Publicly Available Dental Image Datasets for Artificial Intelligence. J Dental Research 2024; 103: 1365-1374. DOI: 10.1177/00220345241272052.
  2. Hamamci IE, Er S, Simsar E, Yuksel AE, Gultekin S, Ozdemir SD, Yang K, Li HB, Pati S, Stadlinger B, Mehl A, Gundogar M, Menze B. DENTEX: An Abnormal Tooth Detection with Dental Enumeration and Diagnosis Benchmark for Panoramic X-rays. 2023. DOI: 10.48550/arXiv.2305.19112.
  3. Hamamci IE, Er S, Simsar E, Sekuboyina A, Gundogar M, Stadlinger B, Mehl A, Menze B. Diffusion-based hierarchical multi-label object detection to analyze panoramic dental X-rays. In Book: International conference on medical image computing and computer-assisted intervention. Cham: Springer Nature Switzerland; 2023: 389-399. DOI: 10.1007/978-3-031-43987-238.
  4. Panetta K, Rajendran R, Ramesh A, Rao S, Agaian S. Tufts Dental Database: A Multimodal Panoramic X-Ray Dataset for Benchmarking Diagnostic Systems. IEEE J Biomedical Health Informatics 2022; 26: 1650-1659. DOI: 10.1109/JBHI.2021.3117575.
  5. Wang C-W, Huang C-T, Lee J-H, Li C-H, Chang S-W, Siao M-J, Lai T-M, Ibragimov B, Vrtovec T, Ronneberger O, Fischer P, Cootes TF, Lindner C. A benchmark for comparison of dental radiography analysis algorithms. Med Image Analysis 2016; 31: 63-76. DOI: 10.1016/j.media.2016.02.004.
  6. Uribe SE. AI Dental Research Dataset Catalogue. Source: <https://github.com/sergiouribe/dental_datasets_itu/blob/main/AI_Dental_Datasets_List.md>.
  7. Wang Y, Ye F, Chen Y, Wang C, Wu C, Xu F, Ma Z, Liu Y, Zhang Y, Cao M, Chen X. A multi-modal dental dataset for semi-supervised deep learning image segmentation. Sci Data 2025; 12: 117. DOI: 10.1038/S41597-024-04306-9.
  8. Liu W, Huang Y, Tang S. A multimodal dental dataset facilitating machine learning research and clinic services v1.1.0. Source: <https://physionet.org/content/multimodal–dental–dataset/1.1.0/>.
  9. Huang Y, Liu W, Yao C, Miao X, Guan X, Lu X, Liang X, Ma L, Tang S, Zhang Z, Zhan J. A multimodal dental dataset facilitating machine learning research and clinic services. Sci Data 2024; 11: 1-11. DOI: 10.1038/S41597-024-04130-1.
  10. Ben-Hamadou A, Neifar N, Rekik A, Smaoui O, Bouzguenda F, Pujades S, Boyer E, Ladroit E. Teeth3DS+: An Extended Benchmark for Intraoral 3D Scans Analysis. arXiv:2210.06094. 2022. DOI: 10.48550/ARXIV.2210.06094.
  11. Nguyen KD, Hoang HT, Doan TPH, Dao KQ, Wang DH, Hsu ML. SegmentAnyTooth: An open-source deep learning framework for tooth enumeration and segmentation in intraoral photos. J Dental Sciences 2025; 20: 1110-1117. DOI: 10.1016/J.JDS.2025.01.003.
  12. Nguyen KD. GitHub: SegmentAnyTooth: An open-source deep learning framework for tooth enumeration and segmentation in intraoral photos. Source: <https://github.com/thangngoc89/SegmentAnyTooth>.
  13. You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health 2020; 20: 1-7. DOI: 10.1186/S12903-020-01114-6.
  14. Liu Y, Cheng Y, Song Y, Cai D, Zhang N. Oral screening of dental calculus, gingivitis and dental caries through segmentation on intraoral photographic images using deep learning. BMC Oral Health 2024; 24: 1-10. DOI: 10.1186/S12903-024-05072-1.
  15. Piyarathne NS, Liyanage SN, Rasnayaka RMSGK, Hettiarachchi PVKS, Devindi GAI, Francis FBAH, Dissanayake DMD, Ranasinghe RANS, Pavithya MBD, Nawinne IB, Ragel RG, Jayasinghe RD. A comprehensive dataset of annotated oral cavity images for diagnosis of oral cancer and oral potentially malignant disorders. Oral Oncology 2024; 156: 106946. DOI: 10.1016/J.ORALONCOLOGY.2024.106946.
  16. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. 2018. Source: <http://arxiv.org/abs/1703.06870>.
  17. Leading Image Video Data Annotation Platform – CVAT. Source: <https://www.cvat.ai/>.
  18. GitHub – cvat–ai/cvat: Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. Source: <https://github.com/cvat–ai/cvat>.
  19. Sturdevant CM, Roberson TM, Heymann HO, Swift EJ. Sturdevant’s art and science of operative dentistry. 7th ed. Elsevier; 2018.
  20. Black GV. Operative dentistry: The pathology of the hard tissues of the teeth (Vol. 1). Medico-Dental Publishing Company; 1908.
  21. Kaggle: AlphaDent: Teeth marking. Source: <https://www.kaggle.com/competitions/alpha-dent/>.
  22. Terven J, Córdova-Esparza DM, Romero-González JA. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO–NAS. Machine Learning and Knowledge Extraction 2023; 5: 1680-1716. DOI: 10.3390/MAKE5040083.
  23. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. Int J Computer Vision 2010; 303–338. DOI: 10.1007/S11263-009-0275-4.
  24. GitHub: AlphaDent. Source: <https://github.com/ZFTurbo/AlphaDent>.
  25. He K, Gkioxari G, Dollár P, Girshick R. Mask R–CNN. In Book: Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969. DOI: 10.1109/tpami.2018.2844175.
  26. Chen K, Pang J, Wang J, Xiong Y, Li X, Sun S, Lin D. Hybrid task cascade for instance segmentation. In Book: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 4974-4983. DOI: 10.1109/CVPR.2019.00511.
  27. Wang X, Zhang R, Kong T, Li L, Shen C. Solov2: Dynamic and fast instance segmentation. Advances in Neural information processing systems 2020; 33: 17721-17732. DOI: 10.48550/arXiv.2003.10152.
  28. Bolya D, Zhou C, Xiao F, Lee YJ. Yolact: Real-time instance segmentation. In Book: Proceedings of the IEEE/CVF international conference on computer vision. 2019: 9157-9166. DOI: 10.1109/ICCV.2019.00925.
  29. Jain J, Li J, Chiu MT, Hassani A, Orlov N, Shi H. Oneformer: One transformer to rule universal image segmentation. In Book: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 2989-2998. DOI: 10.1109/CVPR52729.2023.00292.
  30. Cheng B, Misra I, Schwing AG, Kirillov A, Girdhar R. Masked-attention mask transformer for universal image segmentation. In Book: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 1290-1299. DOI: 10.1109/CVPR52688.2022.00135.
  31. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Zitnick CL. Microsoft coco: Common objects in context. In Book: European conference on computer vision. Cham: Springer International Publishing; 2014: 740-755. DOI: 10.48550/arXiv.1405.0312.
  32. Kostenetskiy PS, Chulkevich RA, Kozyrev VI. HPC Resources of the Higher School of Economics. J Physics: Conference Series 2021; 1740(1): 012050. DOI: 10.1088/1742-6596/1740/1/012050
    .

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20