(49-6) 30 * << * >> * Русский * English * Содержание * Все выпуски

High-resolution X-ray imaging for industrial process monitoring and quality control
E. Zschech 1, M.V. Chukalina 2, K.B. Bulatov 2

Brandenburg University of Technology,
03046, Germany, Cottbus, Platz der Deutschen Einheit 1, Konrad-Zuse-Strasse 1;
Federal Research Center "Computer Science and Control", RAS,
119333, Russia, Moscow, Vavilov street 44 b. 2

  PDF, 1967 kB

DOI: 10.18287/COJ1803

Страницы: 1138-1147.

Язык статьи: English.

Аннотация:
High-resolution X-ray imaging is an essential component of advanced workflows for industrial process monitoring and quality control (e.g., for metrology and defect inspection in the semiconductor industry). Depending on the specific application area, however, it is subject to different requirements, particularly regarding imaging accuracy and reconstruction fidelity, which are analyzed and systematically structured in this study. As an example, a seamless workflow of two nondestructive techniques with different spatial resolution and different throughput (here shown for a combination of acoustic and X-ray techniques) is proposed to auto-detect and auto-classify defects. X-ray microcopy and high-resolution X-ray computed tomography (XCT) provide nondestructive characterization capabilities on opaque objects, observing features with sizes down to several 10 nanometers. Because of the ability of micro-XCT and nano-XCT to reveal structural characteristics, to determine deviations from a well-defined standard, or to observe kinetic processes, they are suitable imaging techniques for micro- and nano-structured objects, but also for industrial process monitoring and quality control. Typical applications of high-resolution XCT are categorized into 3 groups: 1) Structure analysis – Creation of 3D digital images of the complete interior structure of an opaque object, 2) Flaw detection – Monitoring industrial processes and defect inspection, and 3) Quality control – Observing kinetic processes in objects important for industrial quality control and reliability engineering. These different categories of applications have different requirements for the accuracy of the 3D reconstruction and for the time-to-data. While the highest possible resolution is requested for group 1, data acquisition and data analysis time are essential for group 2. To get high-resolution 3D information of the complete interior structure of an opaque object using lens-based laboratory nano-XCT requires a thorough data analysis, e.g., the application of deep convolutional neural networks, for denoising and mitigation of artefacts. Kinetic studies for group 3, e.g., of reliability-limiting degradation processes in microchips, provide the opportunity to establish appropriate risk mitigation strategies to avoid catastrophic failure.
      The rapid evolution of advanced semiconductor technologies, including technologies for heterogeneous 3D integration of ICs and chiplet architectures, provides significant challenges for metrology, defect inspection, and physical failure analysis (PFA). The application of nano-XCT as a highly reliable inspection method requires a balance between throughput and fault detection (i.e., measurement and reconstruction accuracy). Ways to achieve a drastic increase in acquisition speed include high-brilliance laboratory X-ray sources, the application of AI algorithms for new image acquisition protocols, and high-speed data processing. A thorough and systematic analysis of the accuracy needed and the consequences for protocol and data analysis will support the goal of the semiconductor industry to improve throughput in metrology and defect inspection.
     This work may be of interest to a broad audience, including both specialists in the field of XCT and professionals employing XCT as a tool for industrial applications.

Ключевые слова:
computed tomography, reconstruction algorithms, reconstruction accuracy, metrology, defect inspection, reliability engineering.

Citation:
Zschech E, Chukalina MV, Bulatov KB. High-resolution X-ray imaging for industrial process monitoring and quality control. Computer Optics 2025; 49(6): 1138-1147. DOI: 10.18287/COJ1803.

References:

  1. Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, Maire E, Manley M, Du Plessis A, Stock SR. X-ray computed tomography. Nature Reviews Methods Primers 2021; 1(1): 1-21. DOI: 10.1038/s43586-021-00015-4.
  2. Cernik R, King A, Ludwig W, Olivo A, Withers PJ. X-ray tomography methods. International Tables for Crystallography : in 10 volumes. Prague «International Union of Crystallography» Publisher; 2023: 1-27.
  3. Elliott JC, Dover SD. X-ray microtomography. Journal of Microscopy 1982; 126(2): 211–213. DOI: 10.1111/j.1365–2818.1982.tb00376.x.
  4. Müller D, Graetz J, Balles A, Stier S, Hanke R, Fella C. Laboratory-based nano-computed tomography and examples of its application in the field of materials research. Crystals 2021; 11(6): 1–14. DOI: 10.3390/cryst1106067
  5. Lau SH, Gul S, Gelb J, Qin T, Lewis S, Yun W. Pushing the speed and resolution limits of 3D X-ray for in-line metrology in wafer level integration and offline defect characterization. Frontiers of characterization and metrology for nanoelectronics (FCMN) 2024; 215–217.
  6. Zschech, E. Nano NDE with X-Rays. In Book: Meyendorf, N., Ida, N., Singh, R., Vrana, J. (eds) Handbook of Nondestructive Evaluation 4.0. Cham: Springer; 2025; 1377-1400.
  7. Tkachuk A, Duewer F, Cui H, Feser M, Wang S, Yun W. X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nn resolution using Cu rotating anode X-ray source Zeitschrift für Kristallographie – Crystalline Materials 2007; 222(11): 650–655. DOI: 10.1524/zkri.2007.222.11.650.
  8. Merkle AP, Gelb J. Ascent of 3D X-ray microscopy in the laboratory. Microscopy Today 2013; 21(2): 10-15. DOI: 10.1017/S1551929513000060.
  9. Zschech E, Loeffler M, Krueger P, Gluch J, Kutukova K, Zglobicka I, Silomon J, Rosenkranz R, Standke Y, Topal E. Laboratory computed X–ray tomography – A nondestructive technique for 3D microstructure analysis of materials. Practical Metallography 2018; 55(8): 539-555. DOI: 10.3139/147.110537.
  10. Zschech E, Yun W, Schneider G. High-resolution X-ray imaging – A powerful technique for application in semiconductor industry. Applied Physics A 2008; 92(3): 423-429. DOI: 10.1007/s00339-008-4551-x.
  11. Kong LW, Lloyd JR, Yeap KB, Zschech E, Rudack A, Liehr M, Diebold A. Applying X-ray microscopy and finite element modelling to identify the mechanism of stress-assisted void growth in through silicon vias. Journal of Applied Physics 2011; 110(5): 053502. DOI: 10.1063/1.3629988.
  12. Knickerbocker JU, Kong LW, Niese S, Diebold A, Zschech E. 3D Interconnect Technology. In Book: Baklanov M, Ho PS, Zschech E, ed. Advanced Interconnects for ULSI Technology. Chichester: John Wiley and Sons; 2012: 437-502.
  13. Shearing PR, Wu Y, Harris SJ, Brandon N. In situ X-ray spectroscopy and imaging of battery materials. The Electrochemical Society Interface 2011; 20(3): 43-47. DOI: 10.1149/2.F03113if.
  14. Shearing PR, Eastwood DS, Bradley RS, Gelb J, Cooper SJ, Tariq F, Brett DJL, Brandon NP, Withers PJ, Lee PD. Exploring electrochemical devices using X-ray microscopy. Microscopy and Analysis 2013; March: 19-22.
  15. Shapovalov S, Kutukova K, Maletti S, Heubner C, Butova V, Shukaev I, Guda A, Soldatov A, Zschech E. Laboratory X-ray microscopy study of microcrack evolution in a novel Sodium Iron Titanate-based cathode material for Li-ion batteries. Crystals 2022; 12(1). DOI: 10.1002/9781119963677.ch12.
  16. Burnett TL, Kelley R, Winiarski B, Contreras L, Daly M, Gholinia A, Burke MG, Withers PJ. Large volume serial section tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy 2016; 161: 119–129.
  17. Zschech E, Gluch J, Kutukova K, Silomon J. Really nondestructive high-resolution X-ray computed tomography for advanced packaging applications. Frontiers of characterization and metrology for nanoelectronics (FCMN) 2019; 82.
  18. Mücklich F, Engstler M, Britz D, Gola J. Serial sectioning techniques – a versatile method for three-dimensional microstructural imaging. Practical Metallograhy 2018; 55(8): 569-578. DOI: 10.3139/147.110535.
  19. Echlin MP, Burnett TL, Polonsky AT, Pollock TM, Withers PJ. Serial sectioning in the SEM for three-dimensional materials science. Current Opinion in Solid State and Materials Science 2020; 24(2): 100817. DOI: 10.1016/j.cossms.2020.100817.
  20. Zhang Y, Popielarski B, Davidson K, Men L, Zhao W, Baumann F. Development of ultra-thin TEM lamella preparation technique and its application in failure analysis. Microscopy and Microanalysis 2020; 26(S2): 1400-1402.
  21. Rabinovich AM. Tomography for pulmonary tuberculosis [In Russian]. Leningrad: "Medgiz" Publisher; 1963.
  22. Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften Leipzig 1917; 29: 262-277.
  23. Grossman G. Tomographie I (Rontgenographische Darstellung von Korperschnitten). Fortschr a d Geb d Röntgenstr 1935; 51: 61-80.
  24. Grossman G. Tomographie II (Theoretisches über Tomographie). Fortschr a d Geb d Röntgenstr 1935; 51: 191-208.
  25. Grossman G. Praktische Voraussetzungen für die Tomographie. Fortschr a d Geb d Röntgenstr 1935; 52(H): 44.
  26. Chaoul H. Ueber die Tomographie und insbesondoreihre Anwendung in der Lungendiagnostik. Fortschr a d Geb d Röntgenstr 1935; 51: 342–356.
  27. Korenblum BI, Tetelbaum SI, Tyutin AA. About one scheme of tomography [In Russian]. Izvestiya VUZov MVO: Radiofizika 1958; 1(3): 13–19.
  28. Gustschin A. Translation: About one scheme of tomography. arXiv Preprint arXiv:2004.03750v1 2020. Source: <https://arxiv.org/abs/2004.03750>.
  29. Cormack AM. Representation of a function by its line integrals, with some radiological applications. J Appl Phys 1963; 34(9): 2722–2727. DOI: 10.1063/1.1729798.
  30. Cormack AM. Representation of a function by its line integrals, with some radiological applications. II. J Appl Phys 1964; 35(10): 2908–2913. DOI: 10.1063/1.1713127.
  31. Cormack AM. Reconstruction of densities from their projections, with applications in radiological physics. Phys Med Biol 1973; 18(2): 195–207. DOI: 10.1088/0031-9155/18/2/003.
  32. Alexander RE, Gunderman RE. EMI and the first CT scanner. J Am Coll Radiol 2010; 7(10): 778–781. DOI: 10.1016/j.jacr.2010.06.003.
  33. Mitchell W. Playing leap–frog with elephants: EMI Ltd. and the CT scanner competition in the 1970's. Ann Arbor: University of Michigan Ross Business School; 1989. Source: <http://www2.rotman.utoronto.ca/william.mitchell/Bio/TeachingMaterials/0Cases/emi/emi_2005a.pdf>.
  34. Vanshtein BК. About finding the structure of objects by projections [In Russian]. Kristallographia 1970; 15(5): 894-902.
  35. Vanshtein BК. Three-dimensional electron microscopy of biological macromolecules. Sov Phys Usp 1973; 109(3): 455-497. DOI: 10.1070/PU1973v016n02ABEH005164.
  36. Vasilieva EY, Maiorov A. Application of computer tomography for fuel rod control [In Russian]. Atomnaya Energia 1979; 46(6): 403-406.
  37. Rubashov IB, Timonov AA, Rapkin YI, Dorofeev YV, Pestryakov AV. Tomograph [In Russia]. USSR Inventor’s certificate SU 928277 of May 15, 1982, Russian Bull of Inventions N18, 1982.
  38. Rubashov IB, Timonov AA, Pestryakov AV. Abaut computer tomography [In Russian]. Doklady Academii Nauk SSSR 1980; 258(4): 846-850.
  39. Topal E, Liao Zh, Löffler M, Gluch J, Zhang J, Feng X, Zschech E. Multi-scale X-ray tomography and machine learning algorithms to study MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam. BMC Mater 2020; 2: 1-14. DOI: 10.1186/s42833-020-00011-0.
  40. Du M, Nashed YSG, Kandel S, Gürsoy D, Jacobsen C. Three dimensions, two microscopes, one code: Automatic differentiation for X-ray nanotomography beyond the depth of focus limit. Sci Adv 2020; 6(13): 1-12. DOI: 10.1126/sciadv.aay3700.
  41. Lemelle L, Simionovici A, Colin P, Knott G, Bohic S, Cloetens B, Schneider B. Nano-imaging trace elements at organelle levels in substantia nigra overexpressing α-synuclein to model Parkinson’s disease. Commun Biol 2020; 3(1): 1-10. DOI: 10.1038/s42003-020-1084-0.
  42. Nguyen TT, Villanova J, Su Z, Tucoulou R, Fleutot B, Delobel B, Delacourt C, Demortière A. 3D Quantification of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high-energy density electrodes by X-Ray holographic nanotomography. Adv Energy Mater 2021; 11: 1-15. DOI: 10.1002/aenm.202003529.
  43. Chukalina MV. On the problem of accuracy assessment in computed tomography. Information Technologies and Computing Systems 2025; 2: 3-11. DOI: 10.14357/20718632250201.
  44. Microelectronics and Advanced Packaging Technologies Roadmap (MAPT) International Technology Roadmap for Semiconductors (ITRS) – Semiconductor Industry Association. Source: <https://www.src.org/about/mapt–roadmap/>.
  45. Li S. Failure analysis challenges for chip-scale packages. International Symposium for Testing and Failure Analysis ISTFA 2023. 1-95. DOI: 10.31399/asm.cp.istfa2023tpz1.
  46. Fang T, An J, Chen Q, He Y, Wang H, Zhang X. Progress and comparison in nondestructive detection, imaging and recognition technology for defects of wafers, chips and solder joints. Nondestructive Testing and Evaluation 2023; 39: 1-55. DOI: 10.1080/10589759.2023.2274007.
  47. Kutukova K, Gluch J, Kraatz M, Clausner A, Zschech E. In-situ X-ray tomographic imaging and controlled steering of microcracks in 3D nanopatterned structures. Materials ans Design 2022; 221: 110946. DOI: 10.1016/j.matdes.2022.110946.
  48. Topal E, Löffler M, Zschech E. Deep Learning-based inaccuracy compensation in reconstruction of high resolution XCT data. Scientific Reports 2020; 10(1): 1-13.
  49. Bulatov K, Chukalina M, Kutukova K, Kohan V, Ingacheva A, Buzmakov A, Arlazarov VV, Zschech E. Monitored tomographic reconstruction – An advanced tool to study the 3D morphology of nanomaterials. Nanomaterials 2021; 11(10): 1-11. DOI: 10.3390/nano11102524.
  50. Sara U, Akter M, Uddin M, Image quality assessment through FSIM, SSIM, MSE and PSNR – A comparative study. Journal of Computer and Communications 2019; 7(3): 8-18. DOI: 10.4236/jcc.2019.73002.
  51. Kim M, Lee H, Jang A, Lee W, Back S, Kim I, Park J, Jee Y, Lee I, Moon K, Kang U, Kim D. Multi-stack hybrid Cu bonding technology development using ultra–thin chips. Proc 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC) 2023; 1672-1676.
  52. Lau JH. State-of-the-art of Cu-Cu hybrid bonding. IEEE Transactions on Components, Packaging and Manufacturing Technology 2024; 14(3): 376-396. DOI: 10.1109/TCPMT.2024.3367985.
  53. Zhou W, Kwon M, Chiu Y, Guo H Bhushan B, Street B, Parekh K, Singh A. Critical challenges with copper hybrid bonding for chip-to-wafer memory stacking. 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC) 2023; 336–341. DOI: 10.1109/ECTC51909.2023.00063.
  54. Electronic Device Failure Analysis Society (EDFAS) roadmap committee – ASM International. Source: <https://www.asminternational.org/edfas/fa–technology–roadmap–committee/>.
  55. Zwangenburg EA, Williams MA, Warnett JM. Review of high-speed imaging with lab-based X-ray computed tomography. Measurment Science Technology 2021; 33(1): 1-18. DOI: 10.1088/1361-6501/ac354a.
  56. Zschech E, Kutukova K, Lechowski B, Czurratis P, Djuric-Rissner T. Combining acoustic microscopy and X-ray microscopy for metrology, inspection and failure analysis in advanced packaging. Proc ISMP–IRSP 2024 Conf 2024.
  57. Brand S, Tismer S, Moe ST, Schjølberg-Henriksen K. Non-destructive wafer-level bond defect identification by scanning acoustic microscopy. Microsystem Technologies 2015; 21(7): 1385-1394.
  58. Mehr MY, Bahrami A, Fischer H, Gielen S, Corbeij R, Van Driel WD, Zhang GQ. An overview of scanning acoustic microscopy, a reliable method for nondestructive failure analysis in microelectronic components. EuroSimE 2015: 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems 2015; 1-4. DOI: 10.1109/EuroSimE.2015.7103077.
  59. Phommahaxay A, Philipsen H, Civale Y, Vandermissen K, Halder S, Beyer G, Swinnen B, Beyne E, Miller A, De Wolf I, Hoffrogge P, Brand S, Czurratis P. High frequency scanning acoustic microscopy applied to 3D integrated process: Void detection in Through Silicon Vias. 63rd IEEE ECTC 2013; 227-231.
  60. Brand S, Lapadatu A, Djuric T, Czurratis P, Schischka J, Petzold M. Scanning acoustic gigahertz microscopy for metrology applications in three-dimensional integration technologies. J Micro/Nanolithography, MEMS, and MOEMS 2014; 13(1): 1-9. DOI: 10.1117/1.JMM.13.1.011207.
  61. Paulachan P, Siegert J, Wiesler I, Brunner R. An end-to-end convolutional neural network for automated failure localisation and characterisation of 3D interconnects. Scientific Reports 2023; 13(1): 1-13.
  62. Sylvester Y. 3D X-ray microscopy: A nondestructive high-resolution imaging technology that replaces physical cross-sectioning for 3DIC packaging. Advanced Semiconductor Manufacturing Conference 2013; 249-255.
  63. Zschech E, Niese S, Gall M, Loeffler M, Wolf J. 3D IC stack characterization using multi-scale X-ray tomography. Proc 20th PanPacific Microelectronics Symposium 2015.
  64. Lechowski B, Kutukova K, Grenzer J, Panchenko I, Krueger P, Clausner A, Zschech E. Laboratory X-ray microscopy of 3D nanostructures in the hard X-ray regime enabled by a combination of multilayer X-ray optics. Nanomaterials 2024; 14: 1-8. DOI: 10.3390/nano14020233.
  65. Kong LW, Krueger P, Zschech E, Rudack AC, Arkalgud S, Diebold AC. Sub-imaging techniques for 3D-interconnects on bonded wafer pairs. AIP Conference Proceedings 2010; 1300(1): 221-228. DOI: 10.1063/1.3527376.
  66. Polevoy D, Kazimirov D, Gilmanov M, Nikolaev D. No reproducibility, no progress: Rethinking CT benchmarking. Journal of Imaging 2025; 11(10): 1-36. DOI: 10.3390/jimaging11100344.
  67. Carmignato S. Accuracy of industrial computed tomography measurements: Experimental results from an international comparison. CIRP Annals 2012; 61(1): 491-494. DOI: 10.1016/j.cirp.2012.03.099.
  68. De Chiffre L, Carmignato S, Kruth J-P, Schmitt R, Weckenmann A. Industrial applications of computed tomography. CIRP Annals 2014; 63(2): 655-677. DOI: 10.1016/j.cirp.2014.05.011.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20