(49-6) 35 * << * >> * Русский * English * Содержание * Все выпуски
Improving Data Matrix mobile recognition via fast Hough transform and adaptive grid extractors
E.O. Rybakova 1, E.E. Limonova 1,2, P.V. Bezmaternykh 1,2
1 Smart Engines Service LLC,
Prospekt 60-Letiya, Oktyabrya, 9, Moscow, 117312, Russia;
2 Federal Research Center "Computer Science and Control" of Russian Academy of Sciences,
Ulitsa Vavilova, 40, Moscow, 119333, Russia
PDF, 2322 kB
DOI: 10.18287/COJ1804
Страницы: 1182-1160.
Язык статьи: English.
Аннотация:
The Data Matrix is a barcode symbology originally designed for industrial needs. Today, its symbols are increasingly found on everyday products such as pharmaceutical packaging, electronic components, food labels, and clothing tags. This widespread usage presents a challenge: reading Data Matrix symbols from images captured by mobile cameras in uncontrolled environments. The reading process mainly consists of three steps, namely barcode localization, segmentation and decoding. In this work, we focus on the precise localization and segmentation of Data Matrix barcodes. We introduce a new method that involves the localization of the finder pattern using fast Hough transform and subsequent iterative segmentation to extract the encoded message. Our approach demonstrates superior localization quality, as measured by the mean Intersection over Union metric (0.889), and achieves better recognition accuracy (0.903) compared to open–source solutions for reading Data Matrix barcodes, such as libdmtx (0.665), ZXing (0.569), and ZXing–cpp (0.858). Our method requires only 35 milliseconds for computations on an ARM device, enabling real–time processing. It is significantly faster than libdmtx (10 seconds), ZXing (610 milliseconds), although it is slightly slower than ZXing–cpp (6.65 milliseconds).
Ключевые слова:
barcode localization; barcode segmentation; data matrix; fast Hough Transform; mobile recognition.
Citation:
Rybakova EO, Limonova EE, Bezmaternykh PV. Improving Data Matrix mobile recognition via fast Hough transform and adaptive grid extractors. Computer Optics 2025; 49(6): 1182-1190. DOI: 10.18287/COJ1804.
References:
- E. Ouaviani, A. Pavan, M. Bottazzi, E. Brunelli, F. Caselli, M. Guerrero, A common image processing framework for 2D barcode reading, in: Image Processing And Its Applications, 1999. Seventh International Conference on (Conf. Publ. No. 465), Vol. 2, IET, 1999, pp. 652-655. DOI: 10.1049/cp:19990404.
- A. Zharkov, A. Vavilin, I. Zagaynov, New benchmarks for barcode detection using both synthetic and real data, in: International workshop on document analysis systems, Springer, 2020, pp. 481-493. DOI: 10.1007/978–3–030–57058–3_34.
- I. Szentandrási, A. Herout, M. Dubská, Fast detection and recognition of QR codes in high–resolution images, in: Proceedings of the 28th spring conference on computer graphics, 2012, pp. 129–136. DOI: 10.1145/2448531.2448548.
- P. Bodnár, T. Grósz, L. Tóth, L. G. Nyúl, Efficient visual code localization with neural networks, Pattern Analysis and Applications, vol. 21, 2018, pp. 249–260. DOI: 10.1007/s10044–017–0619–6.
- E. Limonova, P. Zlobin, P. Bezmaternykh, Generation of semisynthetic natural–looking 2D barcodes for localization problems, in: Fifth Symposium on Pattern Recognition and Applications (SPRA 2024), vol. 13540, SPIE, 2025, p. 135400I. DOI: 10.1117/12.3056438.
- D. Nikolaev, S. Karpenko, I. Nikolaev, P. Nikolaev, Hough transform: Underestimated tool in the computer vision field, Proceedings – 22nd European Conference on Modelling and Simulation, ECMS 2008, pp. 238–243. DOI: 10.7148/2008–0238.
- Information technology – Automatic identification and data capture techniques – Data Matrix barcode symbology specification, Edition 3, International Organization for Standardization, 2024.
- D. M. Ershova, A. V. Gayer, P. V. Bezmaternykh, V. V. Arlazarov, YOLO–Barcode: towards universal real–time barcode detection on mobile devices, Computer Optics, vol. 48, n. 4, 2024, pp. 592–600. DOI: 10.18287/2412–6179–CO–1424
- R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, New York, NY, USA, 2003.
- A. Y. Kruchinin, Industrial Data Matrix barcode recognition with random tilt and rotate the camera, Computer Optics, vol. 38, n. 4, 2014, pp. 856–864. DOI: 10.18287/0134–2452–2014–38–4–865–870.
- Z. Liu, X. Guo, C. Cui, Detection algorithm of 2D barcode under complex background, Int. Proc Comput Sci Inf Technol, vol. 53, n. 1, 2012, pp. 116–117.
- Y. Dong, T. Zhang, A real–time algorithm for multiple Data Matrix codes localization, in: Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tianjin, China, October 23–25, 2020, Springer, 2022, pp. 2477–2487.
- L. Karrach, E. Pivarc ̆iová, Recognition of Data Matrix codes in images and their applications in production processes, Management Systems in Production Engineering, 2020. DOI: 10.2478/mspe–2020–0023.
- L. Karrach, E. Pivarc ̆iová, Comparative study of Data Matrix codes localization and recognition methods, Journal of Imaging, vol. 7, n. 9, 2021, p. 163. DOI: 10.3390/jimaging7090163.
- Q. Huang, W.–S. Chen, X.–Y. Huang, Y.–Y. Zhu, Data Matrix code location based on finder pattern detection and bar code border fitting, Mathematical Problems in Engineering, vol. 1, 2012, p. 515296.
- M. A. Fischler, R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol. 24, n. 6, 1981, pp. 381–395.
- T. H. H. Donghong, C. Xinmeng, Radon transformation applied in two dimensional barcode image recognition, Journal of Wuhan University, vol. 5, n. 584, 2005.
- P. V. Bezmaternykh, D. P. Nikolaev, V. L. Arlazarov, High–performance digital image processing, Pattern Recognition and Image Analysis, 2023, pp. 743–755. DOI: 10.1134/S1054661823040090.
- P. V. Bezmaternykh, Text image normalization using fast Hough transform, ITiVS, vol. 4, 2024, pp. 3–16. DOI: 10.14357/20718632240401.
- I. Kunina, E. I. Panfilova, M. Povolotskiy, Zebra–crossing detection on road images using dynamic time warping, Proceedings of ISA RAS, vol. 68, 2018, pp. 23–31.
- O. Pârvu, A. G. Balan, A method for fast detection and decoding of specific 2d barcodes, in: Proceedings of the 17th Telecommunications forum TELFOR, 2009, pp. 1137–1140.
- L. Karrach, E. Pivarčiová, The analyse of the various methods for location of Data Matrix codes in images, in: 2018 ELEKTRO, 2018, pp. 1–6. DOI: 10.1109/ELEKTRO.2018.8398250
- L. K. Leong, W. Yue, Extraction of 2D barcode using keypoint selection and line detection, in: Advances in Multimedia Information Processing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 826–835. DOI: 10.1007/978–3–642–10467–1_73.
- S. H. Loh, P. C. Teh, J. J. Sim, C. K. Tai, K. H. Yeap, Y. J. Lee, A. U. Mazlan, Decoding dot peen Data Matrix code with deep learning capability for product traceability, Applications of Modelling and Simulation, vol. 7, 2023, pp. 38–48.
- Y. Liu, Y. Song, G. Gu, J. Luo, T. Wang, Q. Jiang, A Data Matrix code recognition method based on l–shaped dashed edge localization using central prior, Sensors, vol. 24, n. 13, 2024, p. 4042. DOI: 10.3390/s24134042
- D. Matuszczyk, F. Weichert, Reading direct-part marking Data Matrix code in the context of polymer–based additive manufacturing, Sensors, vol. 23, n. 3, 2023, p. 1619. DOI: 10.3390/s23031619
- libdmtx – Open Source Data Matrix Software. Source: <https://github.com/dmtx/libdmtx> (Accessed 07.10.2025).
- ZXing ("Zebra Crossing") barcode scanning library for Java, Android. Source: <https://github.com/zxing/zxing> (Accessed 07.10.2025).
- C++ port of ZXing. Source: <https://github.com/zxing–cpp/zxing–cpp> (Accessed 07.10.2025).
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20