(24) * << * >> * Russian * English * Content * All Issues

Hybrid Galerkin finite element and boundary element method for analyzing TM-polarized plane waves on cylinder optical elements

D.V. Nesterenko1,2, V.V. Kotlyar1,2
1Image Processing Systems Institute of RAS
2Samara State Aerospace University

 PDF, 594 kB

Pages: 17 - 25.

Abstract:
The article considers the problem of diffraction of a plane electromagnetic TM polarized wave by a two-dimensional (cylindrical) transparent object with the dimensions comparable with the wavelength. A hybrid Galerkin finite element and boundary element method has been developed for an approximate solution of this problem. The boundary element method is applied to the boundary points of the object, and the Galerkin method is applied to the interior and boundary points of the object. The solution is sought in the basis of piecewise linear functions. The field of diffraction by a cylinder with a circular cross section calculated by this method is in good agreement with the diffraction field calculated by the well-known analytical formulas.

Keywords:
hybrid Galerkin, TM-polarized wave, optical element, finite element, piecewise linear function.

Citation:
Nesterenko DV, Kotlyar VV. Hybrid Galerkin finite element and boundary element method for analyzing TM-polarized plane waves on cylinder optical elements. Computer Optics 2002; 24: 17-25.

References:

  1. Montiel F, Neviere M. Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm. J Opt Soc Am A 1994; 11(12): 3241-3250. 
  2. Taflove A. Computational electromagnetics: the finite-difference time domain method. Boston: Artech House; 1995. 
  3. Golovashkin DL, Degtyarev AA, Soifer VA. Modeling the waveguide optical radiation propagation using the electromagnetic theory. Computer Optics 1997; 17: 5-9. 
  4. Brebbia CA. The boundary element method for engineers. London: Pentech Press; 1978. 
  5. Choi MK. Numerical calculation of light scattering from a layered sphere by the boundary-element method. J Opt Soc Am A 2001; 18(3): 577-583. 
  6. Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques: Theory and applications in engineering. Berlin, Heidelberg: Springer-Verlag; 1984. 
  7. Colton D, Kress R. Integral equation methods in scattering theory. New York: John Willey and Sons; 1983. 
  8. Brebbia CA, Walker S. Boundary element techniques in engineering. Boston: Butterworth (Publishers) Inc; 1980. 
  9. Davies JB. Finite element analysis of waveguides and cavities – a review. IEEE Trans Magn 1993; 29(2): 1578-1583. 
  10. Lichtenberg B, Gallagher N. Numerical modeling of diffractive devices using the finite element method. Opt Eng 1994; 33(11): 3518-3526. 
  11. Mikhlin SG. Variational methods in mathematical physics. Oxford: Pergamon Press; 1964. 
  12. Ciarlet PG. The finite-element method for elliptic problems. Amsterdam: North Holland; 1978. 
  13. Blaike RJ, McNab SJ. Evanescent interferometric lithography. Appl Opt 2001; 40(4): 1692-1698. 
  14. Voznesensky N. Simulation model for light propagation through nanometer-sized structures. Optical Memory and Neural Networks 2000; 9(3): 175-183. 
  15. Prather DW, Mirotznik MS, Mait JN. Boundary integral methods applied to the analysis of diffractive optical elements. J Opt Soc Am A 1997; 14(1): 34-43. 
  16. Tanaka M, Tanaka K. Computer simulation for two-dimensional near-field optics with use of a metal-coated dielectric probe. J Opt Soc Am A 2001; 18(4): 919-925. 
  17. Paulus M, Martin OJF. Light propagation and scattering in stratified media: a Green’s tensor approach. J Opt Soc Am A 2001; 18(4): 854-861. 
  18. Dou WB, Yung EKN. Diffraction of an electromagnetic beam by an aperture in a conducting screen. J Opt Soc Am A 2001; 18(4): 801-806. 
  19. Lee J-F, Palandech R, Mittra R. Modeling three-dimensional discontinuities in waveguides using nonorthogonal FDTD algorithm. IEEE Trans Microw Theory Tech 1992; 40: 346-352. 
  20. Prather DW, Shi S. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements. J Opt Soc Am A 1999; 16(5): 1131-1142. 
  21. Shi S, Tao X, Yang L, Prather DW. Analysis of diffractive optical elements using a nonuniform finite-difference time-domain method. Opt Eng 2001; 40(4): 503-510. 
  22. Gruzdev V, Gruzdeva A. Finite-difference time-domain modeling of laser beam propagation and scattering in dielectric materials. Proc SPIE 2001; 4436: 27-38. 
  23. Berenger GP. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 1994; 114: 185-200. 
  24. Mirotznik M, Prather D, Mait J. A hybrid finite element-boundary element method for the analysis of diffractive elements. J Mod Opt 1996; 43(7): 1309-1321. 

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20

151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20