(24) * << * >> * Russian * English * Content * All Issues

Fast algorithms of d-dimensional DFT of real signal in commutative-associative algebras

M.V. Aliev1,2
1 Image Processing Systems Institute of RAS;

 2 Samara State Aerospace University

 PDF, 373 kB

Pages: 130 - 135.

Abstract:
The aim of this work is to develop fast algorithms for computing the so-called “hypercomplex” discrete Fourier transforms (DFT) and analyze their computational characteristics.

Keywords:
d-dimensional DFT, commutative-associative algebra, fast algorithm, discrete Fourier transforms.

Citation:
Aliev MV. Fast algorithms of d-dimensional DFT of real signal in commutative-associative algebras. Computer optics 2002; 24: 130-135.

References:

  1. Chernov VM. Discrete orthogonal transforms with data representation in composition algebras. Proc 9th Scandinavian Conference on Image Analysis (SCIA'95) 1995; 1: 357-364.
  2. Chernov VM. Arithmetic method in the theory of discrete orthogonal transforms. Proc SPIE 1995; 2363: 134-141.
  3. Chichyeva MA, Pershina MV. On various schemes of 2D-DFT decomposition with data representation in the quaternion algebra // Image Processing and Communications 1996; 2(1): 13-20.
  4. Chernov VM. Algorithms of two-dimensional discrete orthogonal transforms realized in Hamilton-Eisenstein code [In Russian]. Problemy Peredachi Informacii 1995; 31(3): 38-46.
  5. Bülow Th, Sommer G. Multi-dimensional signal processing using an algebraically extended signal representation // Algebraic Frames of Perception-Action Cycle (AFPAC'97) 1997: 148-163.
  6. Bülow Th, Sommer G. Hypercomplex signals – A novel extension of the analytic signal to the multidimensional case // IEEE Trans Signal Process 2001; 49(11): 2844-2852.
  7. Bülow Th., Felsberg M. and Sommer G. Non-commutative hypercomplex Fourier transforms of multidimensional signals. In Book: Sommer G, ed. Geometric computing with clifford algebras: Theoretical foundations and applications in computer vision and robotics. Berlin: Springer-Verlag; 2001: 187-207.
  8. Felsberg M, Bülow Th, Sommer G. Commutative hypercomplex Fourier transforms of multidimensional signals. In Book: Sommer G, ed. Geometric computing with clifford algebras: Theoretical foundations and applications in computer vision and robotics. Berlin: Springer-Verlag; 2001: 209-229.
  9. Felsberg M, Bülow Th, Sommer G, Chernov VM. Fast algorithms of hypercomplex Fourier transforms. In Book: Sommer G, ed. Geometric computing with clifford algebras: Theoretical foundations and applications in computer vision and robotics. Berlin: Springer-Verlag; 2001: 231-254.
  10. Bülow Th, Sommer G. Local hypercomplex signal representations and applications. In Book: Sommer G, ed. Geometric computing with clifford algebras: Theoretical foundations and applications in computer vision and robotics. Berlin: Springer-Verlag; 2001: 255-289.
  11. Felsberg M, Sommer G. Optimized fast algorithms for the quaternionic Fourier transform. Proc CAIP'99 1999: 25-32.
  12. Felsberg M, Sommer G. Fast algorithms for the hypercomplex Fourier transforms. Proc 2nd WTFB 2000: 295-302.
  13. Chernov VM, Bülow Th, Felsberg M. Synthesis of fast algorithms for discrete Fourier-Clifford transform. Pattern Recognition and Image Analysis 1998; 8(2): 274-275.
  14. Bülow Th, Sommer G. Das Konzepi einer zweidimensionale Phase unter Vervendung einer algebraisch erweiteren Signalrepresentation. 19 DAGM Symposium Mustererkennung, Braunschweig 1997: 351-358.
  15. Bülow Th, Sommer G. Algebraically extended representations of multi-dimensional signals. Proc 10th Scandinavian Conference on Image analysis (SCIA'97) 1997: 559-566.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20