(26) * << * >> * Russian * English * Content * All Issues

Contouring of phase and visualization of light field phase singularity points using circular Radon transform

V.V. Kotlyar1,2, A.A. Kovalev1,2
1Image Processing Systems Institute of RAS 

2Samara State Aerospace University 


 PDF, 125 kB

Pages: 84-89.

Abstract:
The paper investigates the possibility of using the circular Radon transform, introduced by the authors in their previous works, to solve the optical problems such as phase contouring and visualization of points of phase singularity of light fields. A comparison with the existing methods of phase visualization is performed. Analytical expressions are obtained and numerical calculations are carried out, confirming the effectiveness of using the circular Radon transform for solving the indicated optical problems.

Keywords:
radon transform, contouring of phase, light field, optical problem.

Citation:
Kotlyar VV, Kovalev AA. Contouring of phase and visualization of light field phase singularity points using circular Radon transform. Computer Optics 2004; 26: 84-89.

References:

  1. Helgason S. The Radon transform. Boston, MA: Birkhauser; 1980. 
  2. Anger B, Portenier C. Radon integrals. Boston, MA: Birkhauser; 1992. 
  3.  [3] Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sashsische Akadamie der Wissenschaffen 1917; 69: 262-277. 
  4. Deans SR. The Radon transform and some of its applications. New York, Willey Interscience; 1982. 
  5. Rann AG, Katsevich AI. The Radon transform and local tomography. Boca Raton: CRC Press; 1996. 
  6. Hough PVC. Method and means for recognizing complex patterns. U.S. Patent 3069654 of December 18, 1962. 
  7. Chien C-F, Lin T-T. Leaf area measurement of selected vegetable seedlings using elliptical hough transform. Trans ASAE 2002; 45(5): 1669-1677. 
  8. Orlov AA, Sadykov SS, Zhiznyakov AL. Application of the Hough transform for enhancing and canceling the images of ribs on fluorograms [In Russian]. Proc PRIA-5-2000 Conference 2000; 3: 584-588. 
  9. Vershok DA. The algorithm of segmentation of grayscale images. Proc 2nd Int Conf on Neural Networks and Artificial Intelligence (ICNNAI'2001) 2001: 143-146. 
  10. John F. Plane wave and spherical means. New York, Willey and Sons; 1955. 
  11. Zalcman L. Offbeat integral geometry. Amer Math Monthly 1980; 17(3): 161-175. 
  12. Quinto EI. Radon transforms on curves in the plane. In Book: Tomography, impedance imaging, and integral geometry. Providence, RI: American Mathematical Society, 1994: 231-244. 
  13. Yagle AE. Inversion of spherical means using inversion and Radon transforms. Inverse Problems 1992; 8: 949-964. 
  14. Kotlyar VV, Kovalev AA. Circular Radon transform [In Russian]. Computer Optics 2003; 25: 126-131. 
  15. Kotlyar VV, Kovalev AA. Circular Radon transform. Pattern Recognition and Image Analysis 2004; 14(4): 519-528. 
  16. Kotlyar VV, Kovalev AA. Spatial filter for optical performance of Radon transformation [In Russian]. Materials of the scientific-practical conference “Holography in Russia and abroad. Science and Practice” 2004: 45-47. 
  17. Maksutov DD. Fabrication and investigation of astronomical optics [In Russian]. Moscow: "Nauka" Publisher; 1984. 
  18. Bryngdahl O. Radial- and circular-fringe interferograms. J Opt Soc Am 1973; 63: 1098-1104. 
  19. Vaughan JM, Willetts DV. Interference properties of a light beam having helical wave surface. Opt Commun 1979; 30: 263-267. 
  20. Nye JF, Berry MV. Dislocation in wave trains. Proc Math Phys Eng Sci 1974; 336(1605): 165-190. 
  21. Berry MV. Singularities in wave and rays. In Book: Balian R, Klaeman M, Poirier J-P, eds. Physics of defects. Amsterdam: North-Holland; 1981: 453-481. 
  22. Basistiy IV, Marienko IG, Soskin MS, Vasnetsov MV. Optical wavefront dislocation. Proc SPIE 1996; 2792: 172-178. 
  23. Dufresne ER, Grier DG. Optical tweezer arrays and optical substrates created with diffractive optical elements. Rev Sci Instrum 1998; 69(5): 1974-1977. 
  24. Dufresne ER, et al. Computer-generated holographic optical tweezer arrays. Rev Sci Instrum 2001; 72(3): 1810. 
  25. Cojoc D, et al. Design and fabrication of diffractive optical elements for optical tweezer arrays by means of e-beam lithography. Microelectron Eng 2002; 61-62: 963-969. 
  26. Padgett MJ, Allen L. The angular momentum of light: optical spanners and the rotational frequency shift. Opt Quantum Electron 1999; 31: 1-12.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20