(30) * << * >> * Russian * English * Content * All Issues

Laser interferometer with fine-focused beam in a system of three coupled interferometers
D.V. Lyakin1,2, V.V. Lychagov1,2, V.P. Ryabukho1,2, M.I. Lobachev1,2

1Institute of Precision Mechanics and Control, the Russian Academy of Sciences,
2Saratov State University

 PDF, 202 kB

Pages: 53-61.

Full text of article: Russian language.

Abstract:
The study analyzes a system of coupled interferometers — one measuring interferometer and two auxiliary interferometers built according to the Michelson scheme to monitor the spatial position (shape) of an object or the parameters of layered structures. The measuring interferometer functions based on the effect of matching the interfering fields and generates an interference focus coincidence pulse of the probe laser beam with the controlled surface. The auxiliary low-coherent interferometer forms a reference interference pulse, with respect to which the position of the measuring pulse in the path difference scale is determined. An auxiliary laser interferometer is used for this purpose. The study looks into the theory of interferometers, scheme solutions and computer signal processing algorithms. Experimental results are provided, the accuracy of measurements is analyzed.

Keywords:
laser interferometry, fine-focused beam, spatial position (shape) of an object.

Citation:
Lyakin DV, Lychagov VV, Ryabukho VP, Lobachev MI. Laser Interferometer with Fine-Focused Beam in a System of Three Coupled Interferometers. Computer Optics 2006; 30: 53-61.

Acknowledgements:
This work was supported by RFBR grants No. 05-08-50318-a, CRDF No. Y2-BEP-06-17 (REC-006, ANNEX BF4M06) and CRDF RUX0-006-SR-06 (ANNEX BP1M06).

References:

  1. Kolomiytsov YuV. Interferometers: Fundamentals of engineering theory, application [In Russian]. Leningrad: "Mashinostroenie" Publisher; 1976.
  2. Wyant JC. Interferometric optical metrology: basic principles and new systems. Laser Focus 1982; 18: 65-71.
  3. Batrakov AS, Butusov MM, Grechka GP, Kornienko AA, Lukjanov DP. Laser measuring systems [In Russian]. Moscow: "Radio i Svyaz" Publisher; 1981.
  4. Dubnischev YuN, Rinkevichus BS. Laser Doppler anemometry methods [In Russian]. Moscow: "Nauka" Publisher; 1982.
  5. Koronkevich VP, Sobolev VS, Dubintsev YuN. Laser interferometry [In Russian]. Novosibirsk: "Nauka" Publisher; 1983.
  6. Ablekov VK, Kolyadin SA, Frolov AV. High-resolution optical systems [In Russian]. Moscow: "Mashinostroenie" Publisher; 1985.
  7. Chudov VA. Engineering measurements [In Russian]. Measurement Techniques 1990; 3: 61-62.
  8. Vasilyev VN, Gurov IP. Optical interferometry and information technology. Precision process control systems [In Russian]. Journal of Instrument Engineering 1996; 5-6: 13-20.
  9. Vasilyev VN, Gurov IP. Technology of contactless control of objects based on coherent and spectral radars in biomedical research and industry. In Book: Vasilyev VN, ed. Optical and laser technologies [In Russian]. Saint-Petersburg: "SPbGU ITMO" Publisher; 2002.
  10. Gurov IP, Dzhabiev AN. Interferometric systems for distance testing of objects [In Russian]. Saint-Petersburg: "SPbGU ITMO" Publisher; 2000.
  11. Wilson T, Sheppard CJR. Theory and practice of scanning optical microscopy. London: Academic Press; 1984. ISBN: 978-0-12-757760-9.
  12. Wilson T, ed. Confocal microscopy. London: Academic Press; 1990. ISBN: 978-0-12-757270-3.
  13. Chentsov YuV. The confocal laser scanning microscopy in biology and medicine [In Russian]. J Opt Technol 1994; 12: 18-23.
  14. Lezhnev EI, Popova II, Kuzmin SV, Slashchev SM. Confocal laser scanning microscopy: Principles, arrangement, application (Part 1) [In Russian]. Nauchnoe Priborostroenie 2001; 11(2): 3-20.
  15. Hamilton DK, Sheppard CJR. A confocal interference microscope. Optica Acta 1982; 29(12): 1573-1577. DOI: 10.1080/713820806.
  16. Matthews HJ, Hamilton DH, Sheppard CJR. Surface profiling by phase-locked interferometry. Appl Opt 1986; 25(14): 2372-2374. DOI: 10.1364/AO.25.002372.
  17. Gu M. Time-resolved three-dimensional imaging based on confocal interferometry under ultrashort pulsed illumination. Optik 1996; 104(1): 32-34.
  18. Fercher AF. Optical coherence tomography. J Biomed Opt 1996; 1(2): 157-173. DOI: 10.1117/12.231361.
  19. Schmitt JM. Optical coherence tomography (OCT): a review. IEEE J Select Topics Quant Electron 1999; 5(4): 1205-1215. DOI: 10.1109/2944.796348.
  20. Masters BR, ed. Selected papers on optical low-coherence reflectometry and tomography. SPIE Press; 2001. ISBN: 978-0-8194-3837-9.
  21. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography – principles and applications. Report Prog Phys 2003; 66(2): 239-303. DOI: 10.1088/0034-4885/66/2/204.
  22. Bouma BE, Tearney GJ, eds. Handbook of optical coherence tomography. New York: Marcel Dekker Inc; 2002. ISBN: 978-0-8247-0558-9.
  23. Gurov IP. Optical coherent tomography: principles, problems and prospects [In Russian]. In Book: Gurov IP, Kozlov SA, eds. Problems of coherent and nonlinear optics. Saint-Petersburg: "SPbGU ITMO" Publisher; 2004: 6-30.
  24. Ryabukho VP, Khomutov VL, Lyakin DV, Konstantinov KV. Laser interferometer with fine-focused beams to monitor the spatial position of an object. Tech Phys Lett 1998, 24(2): 132-134. DOI: 10.1134/1.1262023.
  25. Kempe M, Rudolph W. Scanning microscopy through thick layers based on linear correlation. Opt Lett 1994; 19(23): 1919-1921. DOI: 10.1364/OL.19.001919.
  26. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 6th ed. Oxford, New York: Pergamon Press; 1980. ISBN: 978-0-08-026481-3.
  27. Lyakin DV, LobachevМI, RezchikovАF, Ryabukho VP, Minenkova IF. Laser scanning interference system to determine the thickness of layered microstructures [In Russian]. Mekhatronika, Avtomatizatsiya, Upravlenie 2003; 4: 10-14

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20