(30) * << * >> * Russian * English * Content * All Issues

Most probable estimates of parameters of optical signals with allowance for shot and background noise
V.S. Sobolev1, Y.A. Poleshchuk
1

1Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk

 PDF, 157 kB

Pages:98-106.

Full text of article: Russian language.

Abstract:
Based on the example of a Gaussian pulse, a likelihood equation is derived for optimal evaluation of the parameters of optical signals with allowance for shot and background noise. The Fisher information matrix and the Cramer-Rao boundaries were developed as characteristics of the quality of the estimates obtained. An algorithm for the numerical solution of the likelihood equation is proposed. By means of a model experiment, the possibility of its implementation is shown, and the quality parameters of the resulting estimates are determined.

Keywords:
Optical Signal, Shot Noise, Background Noise, Gaussian pulse, Fisher information matrix, Cramer-Rao boundaries..

Citation:
Sobolev VS, Poleshchuk YA. Most Probable Estimates of Parameters of Optical Signals with Allowance for Shot and Background Noise. Computer Optics 2006; 30: 98-106.

References:

  1. Shestov NS. Selection of optical signals on the background of random noise [In Russian]. Moscow: “Sovetskoe Radio”; 1967.
  2. Kuriksha AA. Quantum optics and optical location [In Russian]. Moscow: “Svyaz” Publisher; 1973.
  3. Sheremetyev AG. Statistical theory of laser communication [In Russian]. Moscow: “Svyaz” Publisher; 1971.
  4. Sheremetyev AG. Coherent fiber optic communication [In Russian]. Moscow: “Radio i Svyaz” Publisher; 1991.
  5. Malashin MS, Kalinskiy RP, Borisov YuB. Basics of designing laser radar systems [In Russian]. Moscow: “Vysshaya Shkola” Publisher; 1983.
  6. Trishenkov MA. Photo-receiving properties and CCD. Detection of weak optical signals [In Russian]. Moscow: “Radio i Svyaz” Publisher; 1992.
  7. Besson O, Galtier F. Estimating particles velocity from laser measurements: maximum likelihood and Cramer-Rao bounds. IEEE Trans Signal Process 1996; 44(12): 3056-3068. DOI: 10.1109/78.553479.
  8. Sobolev VS, Prokopenko MN. Maximum-likelihood estimates of the frequency and other parameters of signals of laser Doppler measuring systems operating in the one-particle-scattering mode. Quantum Electron 2000; 30(12): 1109-1114. DOI: 10.1070/QE2000v030n12ABEH001873.
  9. Sobolev VS, Feshenko AA. Accurate Cramer-Rao bounds for a laser Doppler anemometer. IEEE Trans Instrum Meas 2006; 55(2): 659-666. DOI: 10.1109/TIM.2006.870334.
  10. Levin BR. Theoretical foundations of statistical radio engineering [In Russian]. Moscow: “Sovetskoe Radio” Publisher; 1968.
  11. Sage AP, Melse JL. Estimation theory with applications to communication and control. New York: McGraw-Hill; 1971. ISBN: 978-0-07-054429-1.
  12. Minkoff J. Signal processing fundamentals and applications for communications and sensing systems. Boston, London: Artech House; 2002. ISBN: 978-1-58053-360-7.
  13. Glauber RJ. Optical coherence and photon statistics. In Book: De Witt C, Blandin A, Cohen-Tannoudji C, eds. Quantum optics and electronics. New York: Gordon and Breach; 1965: 63.
  14. Bykov VP. Laser electrodynamics. Moscow: “Fizmatlit” Publisher; 2006.
  15. Loudon R. The quantum theory of light. 3rd ed. Oxford: Oxford University Press; 2001. ISBN: 978-0-19-850176-3.
  16. Goodman JW. Statistical optics. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley and Sons; 1985. ISBN: 978-0-471-01502-4.
  17. Drugov AA, Kuznetcov EM. Semiconductors 1976; 10(8): 1429.
  18. Drugov AA, Kuznetcov EM. Semiconductors 1977; 11(8): 1616.
  19. Vetohin SS, Gulakov NR, Pertsev AN, Reznikov VI. Single-electron photodetectors [In Russian]. Moscow: "Atomizdat" Publisher, 1979.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20