Rotating elegant bessel-gaussian beams
V.V. Kotlyar
, A.A. Kovalev, R.V. Skidanov, V.A. Soifer

PDF, 1223 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-2-162-170

Pages: 162-170.

Abstract:
We considered a new three-parameter family of rotating asymmetric Bessel-Gaussian beams (aBG-beams) with integer and fractional orbital angular momentum (OAM). Complex amplitude of aBG-beams is proportional to a Gaussian function and to n-th order Bessel function with complex argument. These beams have finite energy. The asymmetry ratio of the aBG-beam depends on the real parameter c ≥ 0. For c = 0, the aBG-beam coincides with the conventional radially symmetric Bessel-Gaussian beam, with increasing c intensity distribution of the aBG-beam takes the form of Crescent. At c >> 1, the beam is widening along the vertical axis while shifting along the horizontal axis. In initial plane, the intensity distribution of asymmetric Bessel-Gaussian beams has a countable number of isolated zeros located on the horizontal axis. Locations of these zeros correspond to optical vortices with unit topological charges and opposite signs on different sides of the origin. During the beam propagation, centers of these vortices rotate around the optical axis along with the entire beam at a non-uniform rate (for large c >> 1): they will rotate by 45 degrees at a distance of the Rayleigh range, and then by another 45 degrees during the rest distance. For different values of the parameter c zeros in the transverse intensity distribution of the beam change their location and change the OAM of the beam. Isolated intensity zero on the optical axis corresponds to an optical vortex with topological charge of n. Laser beam with the shape of rotating Crescent has been generated by using a spatial light modulator..

Key words:
Bessel-Gaussian laser beam, orbital angular momentum, rotation of light beam, complex argument Bessel function.

References:

  1. Gori, F. Bessel-Gauss beams / F. Gori, G. Guattari, C. Pa­dovani // Optics Communications. – 1987. – V. 64. – P. 491-495.
  2. Li, Y. New generalized Bessel-Gauss beams / Y. Li, H. Lee, E. Wolf // Journal of the Optical Society of America A. – 2004. – V. 21. – P. 640-646.
  3. Kisilev, A.P. New structures in paraxial Gaussian beams // Optics and Spectroscopy. – 2004. – V. 96. – P. 479-481.
  4. Gutierrez-Vega, J.C. Helmholz-Gauss waves / J.C. Gu­tierrez-Vega, M.A. Bandres // Journal of the Optical Society of America A. – 2005. – V. 22. – P. 289-298.
  5. Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory // Journal of the Optical Society of America A. – 1987. – V. 4, Issue 4. – P. 651-654.
  6. Miller Jr., W. Symmetry and separation of variables. – Addison-Wesley Pub. Comp., 1977.
  7. Kotlyar, V.V. Algorithm for the generation of non-diffracting Bessel beams / V.V. Kotlyar, S.N. Khonina, V.A. Soifer // Journal of Modern Optics. – 1992. – V. 42, Issue 6. – P. 1231-1239.
  8. Gutierrez-Vega, J.C. Alternative formulation for invariant optical fields: Mathieu beams / J.C. Gutierrez-Vega, M.D. Itur­be-Castillo, S. Chavez-Cedra // Optics Letters. – 2000. – V. 25, Issue 20. – P. 1493-1495.
  9. Chavez-Cedra, S. Elliptic vortices of electromagnetic wave fields / S. Chavez-Cedra, J.C. Gutierrez-Vega, G.H.C. New // Optics Letters. – 2001. – V. 26, Issue 22. – P. 1803-1805.
  10. Kotlyar, V.V. Hermite-Gaussian modal laser beams with orbital angular momentum / V.V. Kotlyar, A.A. Kovalev // Journal of the Optical Society of America A. – 2014. – V. 31, Issue 2. – P. 274-282.
  11. Dennis, M.R. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams / M.R. Dennis, J.D. Ring // Optics Letters. – 2013. – V. 38, Issue 17. – P. 3325-3328.
  12. Prudnikov, A.P. Integrals and series. Special functions / A.P. Prudnikov, J.A. Brychkov, O.I. Marichev. – Moscow: “Nauka” Publisher, 1983. – (In Russian).
  13. Kotlyar, V.V. Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Computer Optics. – 2014. – V. 38(1). – P. 4-10.
  14. Kotlyar, V.V. Asymmetric Bessel modes / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Optics Letters. – 2014. – V. 39, Issue 8. – P. 2395-2398.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20