(38-4) 10 * <<>> * Russian * English * Content * All Issues

Numerical simulation of vortical structures in the rf electromagnetic field
A.O. Gorbunova, I.P. Zavershinskii, N.E. Molevich, D.P. Porfirev

 

Samara State Aerospace University,

Lebedev Physical Institute RAS

PDF, 1251 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-643-650

Pages: 643-650.

Abstract:
Numerical simulation of non-stationary vortical plasma-gas-dynamic structures formed in a swirl flow in the open tube under the RF-electromagnetic field is conducted. It is shown that when the external RF-field coincides with the resonator’s eigenfrequency,  an abrupt jump of gas-dynamic fluctuations and corresponding changes in the discharge structure take place.

Key words:
structures, RF-field, fluctuations.

Citation:
Gorbunova AO, Zavershinskii IP, Molevich NE, Porfirev D.P. Numerical simulation of vortical structures in the rf electromagnetic field. Computer Optics 2014; 38(4): 643-650. DOI: 10.18287/0134-2452-2014-38-4-643-650.

References:

  1. Alekseenko, S.V. Theory of concentrated vortices / S.V. Alekseenko, P.A. Kuibin, V.L. Okulov. – Springer, 2007. – 506 p.
  2. Syred, N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems / N. Syred // Progress in Energy and Combustion Science. – 2006. – Vol. 32. – P. 93-161.
  3. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Cre­ated by Capacity HF Discharge / A.I. Klimov, D.M. Mel­nichenko, N.N. Sukovatkin, B.N. Tolkunov, I.A. Moralev, T.N. Klimova, A.Yu. Boytsov // Quarterly Technical Report ISTC Project No. 3794P, Quarter 10. – Moscow: JINT RAS, 2010. – 28 p.
  4. Fletcher, C. Computational Techniques for Fluid Dynamics / C. Fletcher. – Vol. 2. – Springer Verlag, 1988. – 409 p.
  5. Spalart, P. A One-Equation Turbulence Model for Aerodynamic Flows / P. Spalart, S. Allmaras // Recherche Aerospatiale. American Institute of Aeronautics and Astronautics. – 1994. – Vol. 1. – P. 5-21.
  6. Wilcox, D.C. Turbulence Modeling for CFD / D.C. Wilcox. – La Canada, California: DCW Industries, Inc., 1998. – 460 p.
  7. Menter, F.R. A Correlation-Based Transition Model Using Local Variables. Part I: Model Formulation. / F.R. Menter, R.B. Lan­gtry, S.R. Likki, Y.B. Suzen, P.G. Huang, S. Völ­ker // Journal of Turbomachinery. – 2004. – Vol. 128(3). – P. 413-422.
  8. Zavershinskii, I.P. Numerical simulation of the vortex flow in presence of transversal DC–discharge / I.P. Za­ver­shin­skii, A.I. Klimov, V.G. Makaryan, N.E. Mo­levich, I.A. Mo­ra­lev, D.P. Porfiriev // High Temperatures. – 2010. – Vol. 481, N 1. – P. 157-161.
  9. Zaversinskii, I.P. Structure of RF capacitive discharge in swirl airflow at atmospheric pressure / I.P. Zavershinskii, A.I. Klimov, V.G. Makaryan, N.E. Molevich, I.A. Moralev, D.P. Porfiriev // Technical Physics Letters. – 2011. – Vol. 37(12). – Р. 1120-1123.
  10. Zaversinskii, I.P. Numerical modeling of precessing vortex core in the presence of local heat sources / I.P. Zavershinskii, E.Ya. Kogan, V.G. Makaryan, N.E. Molevich, D.P. Porfiriev, S.S. Sugak // Technical Physics Letters. – 2013. – Vol. 39 (4). – Р. 333-336.
  11. Anacleto, P.M. Swirl flow structure and flame characteristics in a model lean / P.M. Anacleto, E.C. Fernandes, M.V. Heitor, S.I. Shtork // Combustion Science and Technology. – 2003. – Vol. 175. – P. 1369-1388.
  12. Fernandes, E.C. Experimental analysis of the precessing vortex core in a free swirling jet / E.C. Fernandes, M.V. Heitor, S.I. Shtork // Experiments in Fluids. – 2006. – Vol. 40. – P. 177-187.
  13. Dekterev, A.A. Numerical simulation of precession vortex core in gas-liquid flow / A.A. Dekterev, A.A. Gavrilov // Proceedings of the International Conference "Modern Problems of Applied Mathematics and Mechanics: Theory, Experiment and Applications". – Novosibirsk, 2011. – P. 1.
  14. Klimov, A. Longitudinal Vortex Plasmoid Created by Capacity HF Discharge / A. Klimov, V. Bitiurin, B. Tolkunov, I. Moralev, K. Shirnov, M. Plotnikova, K. Minko, V. Kut­laliev // AIAA Paper 2008-1386.
  15. Klimov, A. Hydrogen Plasma Flow Creation for MHD Power Generation / A. Klimov, V. Bitiurin, B. Tolkunov, V. Chinnov, S. Godin, A. Efimov, D. Kutuzov, L. Polyakov // AIAA Paper 2011-3285.
  16. Moralev, I.A. Interaction of gas-discharge plasma with swirl flows. PhD thesis. – Moskow: High Temperature Institute RAS, 2011. – 160 p. – (In Russian).
  17. Hasimoto, H. A soliton on a vortex filament / H. Hasimoto // Journal of Fluid Mechanics. – 1972. – Vol. 51, Issue 3. – P. 477-485.
  18. Leibovich, S. Bending waves on inviscid columnar vortices / S. Leibovich, S.N. Brown, Y. Patel // Journal of Fluid Mechanics. – 1986. – Vol. 173. – P. 595-624.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20