(38-4) 11 * << * >> * Russian * English * Content * All Issues
Hermite-gaussian laser beams with orbital angular momentum
V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev
Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University
PDF, 475 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2014-38-4-651-657
Pages: 651-657.
Abstract:
We consider vortex Hermite-Gaussian modes (VHG-modes) with their complex amplitude being proportional to an n-th order Hermite polynomial dependant on a real parameter a. When |a| < 1, there are n isolated intensity nulls on the horizontal axis in the beam’s cross-section. These nulls generate optical vortices with a topological charge of +1 (a <0) or -1 (a > 0). If |a| > 1, the VHB-mode has analogous isolated nulls on the vertical axis. When |a| = 1, all n isolated nulls appear on the optical axis in the center of the beam and generate an n-th order optical vortex. In this case, the VHG-mode coincides with a Laguerre-Gaussian mode of order (0, n). For a = 0, the VHG-mode coincides with a Hermite-Gaussian mode of order (0, n). We calculate the orbital angular momentum of the VHB-modes, which depends on a parameter a and varies from 0 (at a = 0 and a → ∞) to n (at a = 1).
Key words:
orbital angular momentum of a laser beam, vortex Hermite-Gaussian beam.
Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. Hermite-gaussian laser beams with orbital angular momentum. Computer Optics 2014; 38(4): 651-657. DOI: 10.18287/0134-2452-2014-38-4-651-657.
References:
- Kogelnik, H. Laser beams and resonators / H. Kogelnik, T. Li // Proceedings of the IEEE. – 1966. – Vol. 54. – P. 1312-1329.
- Siegman, A.E. Hermite-Gaussian functions of complex argument as optical beam eigenfunction / A.E. Siegman // Journal of the Optical Society of America. – 1973. – Vol. 63. – P. 1093-1094.
- Pratesi, R. Generalized Gaussian beams in free space / R. Pratesi, L. Ronchi // Journal of the Optical Society of America A. – 1977. – Vol. 67. – P. 1274-1276.
- Kotlyar, V.V. Hermite–Gaussian modal laser beams with orbital angular momentum / V.V. Kotlyar, A.A. Kovalev // Journal of the Optical Society of America A. – 2014. – Vol. 31. – P. 274–282.
- Abramochkin, E.G. Beam transformation and nontransformed beams / E.G. Abramochkin, V.G. Volostnikov // Optics Communications. – 1991. – Vol. 83. – P. 123-125.
- Beijersbergen, M.W. Astigmatic laser mode converters and transfer of orbital angular momentum / M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman // Optics Communications. – 1993. – Vol. 96. – P. 123-132.
- Abramochkin, E.G. Generalized Gaussian beams / E.G. Abramochkin, V.G. Volostnikov // Journal of Optics A: Pure and Applied Optics. – 2004. – Vol. 6. – P. S157-S161.
- Прудников, А.П. Интегралы и ряды / А.П. Прудников, Ю.А. Брычков, О.И. Маричев – М.: Наука, 1981. – 798 с. (Prudnikov, A.P. Integrals and series. Special functions / A.P. Prudnikov, J.A. Brychkov, O.I. Marichev. – Moscow: “Science” Publisher, 1983. – 798 p. – (In Russian).
- Khonina, S.N. An analysis of the angular momentum of a light field in terms of angular harmonics / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, P. Paakkonen, J. Simonen, J. Turunen // Journal of Modern Optics. – 2001. – Vol. 48. – P. 1543-1557.
- Gradshteyn, I.S. Table of Integrals, Series, and Products 5 Edition / I.S. Gradshteyn, I.M. Ryzhik. – New York: Academic, 1996. – 1762 p.
- Magnus, W. Formulas and theorems for the special functions of mathematical physics / W. Magnus, F. Oberhettinger, R.P. Sony. – 3-d ed. – Berlin, Heidelberg: Springer-Verlag, 1966. – 508 p.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20