(38-4) 11 * <<>> * Russian * English * Content * All Issues

Hermite-gaussian laser beams with orbital angular momentum
V.V. Kotlyar
, A.A. Kovalev, A.P. Porfirev

 

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

PDF, 475 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-651-657

Pages: 651-657.

Abstract:
We consider vortex Hermite-Gaussian modes (VHG-modes) with their complex amplitude being proportional to an n-th order Hermite polynomial dependant on a real parameter a. When |a| < 1, there are n isolated intensity nulls on the horizontal axis in the beam’s cross-section. These nulls generate optical vortices with a topological charge of +1 (a <0) or -1 (a > 0). If |a| > 1, the VHB-mode has analogous isolated nulls on the vertical axis. When |a| = 1, all n isolated nulls appear on the optical axis in the center of the beam and generate an n-th order optical vortex. In this case, the VHG-mode coincides with a Laguerre-Gaussian mode of order (0, n). For a = 0, the VHG-mode coincides with a Hermite-Gaussian mode of order (0, n). We calculate the orbital angular momentum of the VHB-modes, which depends on a parameter a and varies from 0 (at a = 0 and a → ∞) to n (at a = 1).

Key words:
orbital angular momentum of a laser beam, vortex Hermite-Gaussian beam.

Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. Hermite-gaussian laser beams with orbital angular momentum. Computer Optics 2014; 38(4): 651-657. DOI: 10.18287/0134-2452-2014-38-4-651-657.

References:

  1. Kogelnik, H. Laser beams and resonators / H. Kogelnik, T. Li // Proceedings of the IEEE. – 1966. – Vol. 54. – P. 1312-1329.
  2. Siegman, A.E. Hermite-Gaussian functions of complex argument as optical beam eigenfunction / A.E. Siegman // Journal of the Optical Society of America. – 1973. – Vol. 63. – P. 1093-1094.
  3. Pratesi, R. Generalized Gaussian beams in free space / R. Pratesi, L. Ronchi // Journal of the Optical Society of America A. – 1977. – Vol. 67. – P. 1274-1276.
  4. Kotlyar, V.V. Hermite–Gaussian modal laser beams with orbital angular momentum / V.V. Kotlyar, A.A. Kovalev // Journal of the Optical Society of America A. – 2014. – Vol. 31. – P. 274–282.
  5. Abramochkin, E.G. Beam transformation and nontransformed beams / E.G. Abramochkin, V.G. Volostnikov // Optics Communications. – 1991. – Vol. 83. – P. 123-125.
  6. Beijersbergen, M.W. Astigmatic laser mode converters and transfer of orbital angular momentum / M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman // Optics Communications. – 1993. – Vol. 96. – P. 123-132.
  7. Abramochkin, E.G. Generalized Gaussian beams / E.G. Ab­ramochkin, V.G. Volostnikov // Journal of Optics A: Pure and Applied Optics. – 2004. – Vol. 6. – P. S157-S161.
  8. Прудников, А.П. Интегралы и ряды / А.П. Прудников, Ю.А. Брычков, О.И. Маричев – М.: Наука, 1981. – 798 с. (Prudnikov, A.P. Integrals and series. Special functions / A.P. Prudnikov, J.A. Brychkov, O.I. Marichev. – Moscow: “Science” Publisher, 1983. – 798 p. – (In Russian).
  9. Khonina, S.N. An analysis of the angular momentum of a light field in terms of angular harmonics / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, P. Paakkonen, J. Simonen, J. Turunen // Journal of Modern Optics. – 2001. – Vol. 48. – P. 1543-1557.
  10. Gradshteyn, I.S. Table of Integrals, Series, and Products 5 Edition / I.S. Gradshteyn, I.M. Ryzhik. – New York: Academic, 1996. – 1762 p.
  11. Magnus, W. Formulas and theorems for the special functions of mathematical physics / W. Magnus, F. Oberhet­tinger, R.P. Sony. – 3-d ed. – Berlin, Heidelberg: Springer-Verlag, 1966. – 508 p.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20