(38-4) 14 * << * >> * Russian * English * Content * All Issues
Calculation of diffraction of laser radiation by a two-dimensional (cylindrical) axicon with the high numerical aperture in various models
S.N. Khonina, A.V. Ustinov, S.A. Degtyarev
Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University
PDF, 1221 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2014-38-4-670-680
Pages: 670-680.
Abstract:
We consider the diffraction of Gaussian beams by a cylindrical axicon whose numerical aperture (NA) is close to or higher than a limiting value (when the incident wave is assumed not to pass through an element). Three models of diffraction were considered: the ray approach, the vector wave theory with a thin optical element approximation and the solution of Maxwell’s equations by the finite elements method.
Although in the ray approach the limiting NA corresponds to the total internal reflection (TIR), the analysis of the ray path has shown that with increasing NA (narrowing axicon’s angle) a proportion of energy leaks through the lateral sides, forming a diverging beam.
In the wave theory, energy dissipation in lateral directions also occurs, but evanescent waves play a special role in the element’s near-field zone. In this case, the analytical estimations for the electric field components have been obtained in a thin element approximation.
Application of the finite element method to Maxwell’s equations has shown that for optimal concentration of energy at the refractive element’s tip its NA should be increased (by narrowing the axicon’s angle or by increasing the material refractive index) only until the TIR occurs. The further increase of the NA results in both the reflection of rays from the flat surface and their output from the lateral sides.
Key words:
two-dimentional (cylindrical) axicon, total internal reflection, the finite elements method.
Citation:
Khonina SN, Ustinov AV, Degtyarev SA. Calculation of diffraction of laser radiation by a two-dimensional (cylindrical) axicon with the high numerical aperture in various models. Computer Optics 2014; 38(4): 670-680. DOI: 10.18287/0134-2452-2014-38-4-670-680.
References:
- McLeod, J.H. The axicon: a new type of optical element / J.H. McLeod // Journal of the Optical Society of America. – 1954. – Vol. 44. – P. 592-597.
- Durnin, J. Diffraction-free beams / J. Durnin, J.J. Miceli, Jr. and J.H. Eberly // Physical Review Letters. – 1987. – V. 58. – P. 1499-1501.
- McGloin, D. Bessel beams: diffraction in a new light / D. McGloin and K. Dholakia // Contemporary Physics. – 2005. – Vol. 46, Issue 1. – P. 15-28.
- Jaroszewicz, Z. Axicon – the most important optical element / Z. Jaroszewicz, A. Burvall, A.T. Friberg // Optics & Photonics News, April 2005.
- Arlt, J. Optical micromanipulation using a Bessel light beam / J. Arlt, V. Garces-Chavez, W. Sibbett and K. Dholakia // Optics Communications. – 2001. – Vol. 197. – P. 239-245.
- Garces-Chavez, V. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam / V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett and K.Dholakia // Nature. – 2002. – Vol. 419. – P. 145-147.
- Soifer, V.A. Optical Microparticle Manipulation: Advances and New Possibilities Created by Diffractive Optics / V.A. Soifer, V.V. Kotlyar, S.N. Khonina // Physics of Particles and Nuclei. – 2004. – Vol. 35, Issue 6. – P. 733-766.
- Ding, Z. High-resolution optical coherence tomography over a large depth range with an axicon lens / Z. Ding, H. Ren, Y. Zhao, J.S. Nelson and Z. Chen // Optics Letters. – 2002. – Vol. 27. – P. 243-245.
- Lee, K. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range / K. Lee and J. Rolland // Optics Letters. – 2008. – Vol. 33. – P. 1696-1698.
- Kotlyar, V.V. Contactless precision measurement of a linear displacement using DOEs forming Bessel beams / V.V. Kotlyar, R.V. Skidanov and S.N. Khonina // Computer Optics. – 2001. – Vol. 21. – P. 102-104. – (In Russian).
- Fortin, M. Optical tests with Bessel beam interferometry / M. Fortin, M. Piché and E.F. Borra // Optics Express. –2004. – Vol. 2, Issue 24. – P. 5887-5895.
- Turunen, J. Holographic generation of diffraction-free beams / J. Turunen, A. Vasara and A.T. Friberg // Applied Optics. – 1988. – Vol. 27. – P. 3959-3962.
- Arlt, J. Optical dipole traps and atomic waveguides based on Bessel light beams / J. Arlt [et al.] // Physical Review. – 2001. – Vol. 63. – P. 063602.
- Cizmar, T. An optical nanotrap array movable over a milimetre range / T. Cizmar, M. Siler, P. Zemanek // Applied Physics B. – 2006. – Vol. 84. – P. 197-203.
- Khonina, S.N. Narrowing of a light spot at diffraction of linearly-polarized beam on binary asymmetric axicons / S.N. Khonina, D.V. Nesterenko, A.A. Morozov, R.V. Skidanov, V.A. Soifer // Optical Memory and Neural Networks (Information Optics). – 2012. – Vol. 21(1). – P. 17-26.
- Khonina, S.N. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams / S.N. Khonina, S.V. Karpeev, S.V. Alferov, D.A. Savelyev, J. Laukkanen, J. Turunen // Journal of Optics. – 2013. – Vol. 15. – P. 085704 (9pp).
- Vahimaa, P. Electromagnetic analysis of nonparaxial Bessel beams generated by diffractive axicons / Pasi Vahimaa, Ville Kettunen, Markku Kuittinen, Jari Turunen and Ari T. Friberg // Journal of the Optical Society of America A. – 1997. – Vol. 14, Issue 8. – P. 1817-1824.
- Zhang, Y. Vector propagation of radially polarized Gaussian beams diffracted by an axicon / Y. Zhang, L. Wang, C. Zheng // Journal of the Optical Society of America A. – 2005. – Vol. 22, Issue 11. – P. 2542-2546.
- Kotlyar, V.V. Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons / V.V. Kotlyar, S.S. Stafeev // Computer Optics. – 2009. – Vol. 33(1). – P. 52-60. – (In Russian).
- Khonina, S.N. Diffraction at binary microaxicons in the near field / S.N. Khonina, P.G. Serafimovich, D.A. Savelyev, I.A. Pustovoi // Journal of Optical Technology. – 2012. – Vol. 79(10). – P. 626-631.
- Khonina, S.N. Near-field propagation of vortex beams: models and computation algorithms / S.N. Khonina, A.V. Ustinov, A.A. Kovalyov, S.G. Volotovsky // Optical Memory and Neural Networks. – 2014. – Vol. 23(2). – P. 50-73.
- Rosen, J. Pseudonondiffracting slitlike beam and its analogy to the pseudonondispersing pulse / J. Rosen, B. Salik, A. Yariv and H. Liu // Optics Letters. – 1995. – Vol. 20. – P. 423-425.
- Kurt, H. Limited-diffraction light propagation with axicon-shape photonic crystals / H. Kurt // Journal of the Optical Society of America B. – 2009. – Vol. 26, Issue 5. – P. 981-986.
- Lin, J. Rigorous electromagnetic analysis of two dimensional micro-axicon by boundary integral equations / J. Lin, J. Tan, J. Liu, S. Liu // Optics Express. – 2009. – Vol. 17, Issue 3. – P. 1466-1471.
- Kurt, H. Generation of a two-dimensional limited-diffraction beam with self-healing ability by annular-type photonic crystals / H. Kurt, M. Turduev // Journal of the Optical Society of America B. – 2012. – Vol. 29, Issue 6. – P. 1245-1256.
- Ustinov, A.V. Calculating the complex transmission function of refractive axicons / A.V. Ustinov and S.N. Khonina, Optical Memory and Neural Networks (Information Optics). – 2012. – Vol. 21, Issue 3. – P. 133-144.
- Born, M. Principles of Optics / M. Born, E. Wolf. – 6th ed. – Oxford: Pergamon, 1980. – Chap. 8.3.
- Totzeck, M. Validity of the scalar Kirchhoff and Rayleigh-Sommerfeld diffraction theories in the near field of small phase objects / M. Totzeck // Journal of the Optical Society of America A. – 1991. – Vol. 8, Issue 1. – P. 27-32.
- Tsoy, V.I. The use of Kirchho? approach for the calculation of the near ?eld amplitudes of electromagnetic ?eld / V.I. Tsoy, L.A. Melnikov // Optics Communications. – 2005. – Vol. 256. – P. 1-9.
- Dubra, A. Diffracted field by an arbitrary aperture / A. Dubra and J.A. Ferrari // American Journal of Physics. – 1999. – Vol. 67(1). – P. 87-92.
- Prudnikov, A. P. Integrals and Series. vol. 1. Elementary Functions / A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev. – Moscow: "Nauka" Publisher, 1981. – 800 p. – (In Russian).
- Nascov, V. Fast computation algorithm for the Rayleigh–Sommerfeld diffraction formula using a type of scaled convolution / V. Nascov, P.C. Logofatu // Applied Optics. – 2009. – Vol. 48, Issue 22. – P. 4310-4319.
- Khonina, S.N. Controlling the contribution of the electric ?eld components to the focus of a high-aperture lens using binary phase structures / S.N. Khonina, S.G. Volotovsky // Journal of the Optical Society of America A. – 2010. – Vol. 27, Issue 10. – P. 2188-2197.
- Degtyarev, S.A. Study of subwavelength localization of a radiation by forming closely spaced singular lines using of subwavelength features of the dielectric micro-relief / S.A. Degtyarev, S.N. Khonina // Computer Optics. – 2013. – Vol. 37(4). – P. 426-430. – (In Russian).
- Khonina, S.N. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam / S.N. Khonina, D.A. Savelyev // Journal of Experimental and Theoretical Physics. – 2013. – Vol. 117(4). – P. 623-630.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20