(38-4) 31 * << * >> * Russian * English * Content * All Issues
Fully constrained linear spectral unmixing algorithm for hyperspectral image analys
A.Yu. Denisova, V.V. Myasnikov
Samara State Aerospace University,
Image Processing Systems Institute, Russian Academy of Sciences
PDF, 497 kB
Full text of article: Russian language.
DOI: 10.18287/0134-2452-2014-38-4-782-789
Pages: 782-789.
Abstract:
In this article, a novel linear spectral unmixing algorithm is proposed and analyzed. The linear spectral mixture defines a model of pixels for hyperspectral images by means of spectral signatures. A set of spectral signatures is assumed to be known. Constraints are imposed on the spectral mixture coefficients: the sum of the coefficients is equal to unity and each coefficient is nonnegative. The results of the algorithm quality and speed analysis are described in the paper.
Key words:
hyperspectral images, linear spectral mixing, constraints, hyperspectral analysis, least squares method.
Citation:
Denisova AY, Myasnikov VV. Fully constrained linear spectral unmixing algorithm for hyperspectral image analys. Computer Optics 2014; 38(4): 782-789. DOI: 10.18287/0134-2452-2014-38-4-782-789.
References:
- Singer, R.B. Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance / R.B. Singer, T.B. McCord // Proceedings of 10th Lunar Planetary Science Conference. – 1979. – P. 1835-1848.
- Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory / B. Hapke // Journal of Geophysical Research: Solid Earth (1978–2012). – 1981. – Vol. 86(B4). – P. 3039-3054.
- Johnson, P. A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures / P. Johnson, M. Smith, S. Taylor-George, J. Adams // Journal of Geophysical Research: Solid Earth (1978–2012). – 1983. – Vol. 88(B4). – P. 3557-3561.
- Chang, C.I. Hyperspectral Data Processing: Algorithm Design and Analysis / C.I. Chang. – John Wiley & Sons, 2013. – 1164 p.
- Chang, C.I. Hyperspectral data exploitation: theory and applications / C.I. Chang. – Wiley-Interscience, 2007. – 456 p.
- Chang, C.I. Hyperspectral imaging: techniques for spectral detection and classification / C.I. Chang. – Springer, 2003. – 370 р.
- Keshara, N. A Survey of Spectral Unmixing Algorithms / N. Keshara // Lincoln Laboratory Journal. – 2003. – Vol. 14(1). – P. 55-78.
- Chang, C.I. Constrained subpixel target detection for remotely sensed imagery / C.I. Chang, D.C. Heinz // Geoscience and Remote Sensing, IEEE Transactions on. – 2000. – Vol. 38(3). – P. 1144-1159.
- Heinz, D.C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery / D.C. Heinz, C.I. Chang // Geoscience and Remote Sensing, IEEE Transactions on. – 2001. – Vol. 39(3). – P. 529-545.
- Lawson, C.L. Solving Least Square Problems / C.L. Lawson , R.J. Hanson. – New Jersey: Prentice Hall, Englewood Cliffs, 1974. – 350 p.
- Haskell, K.H. An algorithm for linear least squares problems with equality and nonnegativity constraints / K.H. Haskell, R.J. Hanson // Mathematical Programming. – 1981. – Vol. 21(1). – P. 98-118.
- Bro, R. A fast Non-negativity-constrained least squares algorithm / R. Bro, S. de Jong // Journal of Chemometrics. – 1997. – Vol. 11. – P. 393-401.
- Rosen, J.B. The gradient projection method for nonlinear programming, part 1: linear constraints / J.B. Rosen // Journal S.I.A.M. – 1960. – Vol. 8. – P. 181-217.
- Rosen, J.B. The gradient projection method for nonlinear programming, part 1: nonlinear constraints / J.B. Rosen // Journal S.I.A.M. – 1961. – Vol. 9. – P. 514-532.
- Minoux, М. Programmation Nathematique: Theorie et Algorithmes Dunod / M. Minoux – Paris: Bordas et C.N.E.T.-E.N.S.T., 1983. – 481 p.
- Denisova, A.Yu. Algorithms of linear spectral mixture analysis for hyperspectral images using base map / A.Yu. Denisova, V.V. Myasnikov // Computer Optics. – 2014. – Vol. 38(2). – P. 297-303.
- Fursov, V.А. Thematic classification of hyperspectral images using conjugacy indicator / V.A. Fursov, S.A. Bibikov, O.A. Bajda // Computer Optics. – 2014. – Vol. 38(1). – P. 154-158.
- Kuznetsov, A.V. A comparison of algorithms for supervised classification using hyperspectral data / A.V. Kuznetsov, V.V. Myasnikov // Computer Optics. – 2014. – Vol. 38(3). – P. 494-502.
- Clark, R.N. The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 microns, U.S. Geological Survey Open File Report 93-592 // R.N. Clark, G.A. Swayze, A.J. Gallagher, T.V.V. King, W.M. Calvin. – 1993. – 1340 p.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20