(38-4) 31 * <<>> * Russian * English * Content * All Issues

Fully constrained linear spectral unmixing algorithm  for hyperspectral image analys
A.Yu. Denisova
, V.V. Myasnikov

 

Samara State Aerospace University,

Image Processing Systems Institute, Russian Academy of Sciences

PDF, 497 kB

Full text of article: Russian language.

DOI: 10.18287/0134-2452-2014-38-4-782-789

Pages: 782-789.

Abstract:
In this article, a novel linear spectral unmixing algorithm is proposed and analyzed. The linear spectral mixture defines a model of pixels for hyperspectral images by means of spectral signatures. A set of spectral signatures is assumed to be known. Constraints are imposed on the spectral mixture coefficients: the sum of the coefficients is equal to unity and each coefficient is nonnegative. The results of the algorithm quality and speed analysis are described in the paper.

Key words:
hyperspectral images, linear spectral mixing, constraints, hyperspectral analysis, least squares method.

Citation:
Denisova AY, Myasnikov VV. Fully constrained linear spectral unmixing algorithm for hyperspectral image analys. Computer Optics 2014; 38(4): 782-789. DOI: 10.18287/0134-2452-2014-38-4-782-789.

References:

  1. Singer, R.B. Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance / R.B. Singer, T.B. McCord // Proceedings of 10th Lunar Planetary Science Conference. – 1979. – P. 1835-1848.
  2. Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory / B. Hapke // Journal of Geophysical Research: Solid Earth (1978–2012). – 1981. – Vol. 86(B4). – P. 3039-3054.
  3. Johnson, P. A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures / P. Johnson, M. Smith, S. Taylor-George, J. Adams // Journal of Geophysical Research: Solid Earth (1978–2012). – 1983. – Vol. 88(B4). – P. 3557-3561.
  4. Chang, C.I. Hyperspectral Data Processing: Algorithm Design and Analysis / C.I. Chang. – John Wiley & Sons, 2013. – 1164 p.
  5. Chang, C.I. Hyperspectral data exploitation: theory and applications / C.I. Chang. – Wiley-Interscience, 2007. – 456 p.
  6. Chang, C.I. Hyperspectral imaging: techniques for spectral detection and classification / C.I. Chang. – Springer, 2003. – 370 р.
  7. Keshara, N. A Survey of Spectral Unmixing Algorithms / N. Keshara // Lincoln Laboratory Journal. – 2003. – Vol. 14(1). – P. 55-78.
  8. Chang, C.I. Constrained subpixel target detection for remotely sensed imagery / C.I. Chang, D.C. Heinz // Geoscience and Remote Sensing, IEEE Transactions on. – 2000. – Vol. 38(3). – P. 1144-1159.
  9. Heinz, D.C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery / D.C. Heinz, C.I. Chang // Geoscience and Remote Sensing, IEEE Transactions on. – 2001. – Vol. 39(3). – P. 529-545.
  10. Lawson, C.L. Solving Least Square Problems / C.L. Lawson , R.J. Hanson. – New Jersey: Prentice Hall, Englewood Cliffs, 1974. – 350 p.
  11. Haskell, K.H. An algorithm for linear least squares problems with equality and nonnegativity constraints / K.H. Haskell, R.J. Hanson // Mathematical Programming. – 1981. – Vol. 21(1). – P. 98-118.
  12. Bro, R. A fast Non-negativity-constrained least squares algorithm / R. Bro, S. de Jong // Journal of Chemometrics. – 1997. – Vol. 11. – P. 393-401.
  13. Rosen, J.B. The gradient projection method for nonlinear programming, part 1: linear constraints / J.B. Rosen // Journal S.I.A.M. – 1960. – Vol. 8. – P. 181-217.
  14. Rosen, J.B. The gradient projection method for nonlinear programming, part 1: nonlinear constraints / J.B. Rosen // Journal S.I.A.M. – 1961. – Vol. 9. – P. 514-532.
  15. Minoux, М. Programmation Nathematique: Theorie et Algorithmes Dunod / M. Minoux – Paris: Bordas et C.N.E.T.-E.N.S.T., 1983. – 481 p.
  16. Denisova, A.Yu. Algorithms of linear spectral mixture analysis for hyperspectral images using base map / A.Yu. Denisova, V.V. Myasnikov // Computer Optics. – 2014. – Vol. 38(2). – P. 297-303.
  17. Fursov, V.А. Thematic classification of hyperspectral images using conjugacy indicator / V.A. Fursov, S.A. Bibikov, O.A. Bajda // Computer Optics. – 2014. – Vol. 38(1). – P. 154-158.
  18. Kuznetsov, A.V. A comparison of algorithms for supervised classification using hyperspectral data / A.V. Kuznetsov, V.V. Myasnikov // Computer Optics. – 2014. – Vol. 38(3). – P. 494-502.
  19. Clark, R.N. The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 microns, U.S. Geological Survey Open File Report 93-592 // R.N. Clark, G.A. Swayze, A.J. Gallagher, T.V.V. King, W.M. Calvin. – 1993. – 1340 p.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail:journal@computeroptics.ru; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20