A parametric model for the autocorrelation function of space hyperspectral data
V.V. Sergeev, R.R. Yuzkiv
Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia
Full text of article: Russian language.
PDF
Abstract:
A new parametric model for the autocorrelation function of space hyperspectral data has been proposed. A heuristic algorithm for estimating the model parameters has been developed. The proposed model has been demonstrated to provide a good approximation of the observed autocorrelation functions.
Keywords:
autocorrelation function, space hyperspectral data, parametric model.
Citation:
Sergeev VV, Yuzkiv RR. A parametric model for the autocorrelation function of space hyperspectral data. Computer Optics 2016; 40(3): 416-421. DOI: 10.18287/0134-2452-2016-40-3-416-421.
References:
- Sergeev VV. Methods of digital simulation of electro-optical systems for remote creation and image processing: Master’s thesis [In Russian]. Samara; 1993.
- Porfiriev LF. Fundamentals of signal transformations theory in electro-optical systems [In Russian]. Saint Petersburg: “Lan” Publisher; 2013.
- Gashnikov MV, Glumov NI, Ilyasova NYu, Myasnikov VV, Popov SB, Sergeyev VV, Soifer VA, Khramov AG, Chernov AV, Chernov VM, Chicheva MA, Fursov VA. Computer Image Processing, Part II: Methods and algorithms. Ed by Soifer VA. VDM Verlag Dr. Müller; 2010.
- Sergeev VV, Chicheva MA. Digital signal and image processing [In Russian]. Samara: Samara State Aerospace University Publisher; 2013.
- Pratt WK. Digital Image Processing. NY: John Wiley & Sons, Inc.; 1978.
- Jain AK. Advances in mathematical models for image processing. Proceedings of the IEEE 1981; 69(5): 502-528. DOI: 10.1109/PROC.1981.12021.
- Pratt WK. Digital Image Processing. NY: John Wiley & Sons, Inc.; 1978.
- Belokurov AA, Sechko VV. Stochastic Models in Analyze and Image Processing Tasks [In Russian]. Foreign Radio Electronics 1989; 5: 3-18.
- Sergeev GA, Yanutsh DA. Statistical methods of natural objects researching [In Russian]. Leningrad: “Gidrometeoizdat” Publisher; 1973.
- Melkanovich AF. Photographic tools and its exploitation [In Russian]. Moscow: Ministry of Defense of the Soviet Union Publisher; 1984.
- Schowengerdt RA. Remote Sensing. Models and Methods for Image Processing. Academic Press, 2006.
- Aviris Airborne Visible / Infrared Imaging Spectrometer. Source: áhttp://aviris.jpl.nasa.gov/ñ.
- Volkov IK, Zuev SM, Cvetkova GM. Stochastic Processes [In Russian]. Ed by Zarubin VS and Krishchenko AP. Moscow: Bauman Moscow State Technical University Publisher; 2006.
- Vittih VA, Sergeev VV, Soifer VA. Image processing in automated research systems [In Russian]. Moscow: “Nauka” Publisher; 1982.
- Haralick RM. Statistical and structural approaches to texture. Proceedings of the IEEE 1979; 67(5): 786-804. DOI: 10.1109/PROC.1979.11328.
- Chochia PA. Two-scale image model. In Book: Zyablov VV, Lebedev DS, eds. Image coding and processing [In Russian]. Moscow: “Nauka” Publisher; 1988. P. 69-87.
- Tihonov VI, Mironov MA. Markov Processes [In Russian]. Moscow: “Sovetskoe Radio” Publisher; 1977.
- Bujmov AG. Palma Field Statistics [In Russian]. Optoelectronics, Instrumentation and Data Processing 1981; No. 6: 13-18.
- Sergeev VV, Denisova AYu. Spectral energy identification method of the linear observation model for remote sensing of the Earth. Pattern Recognition and Image Analysis 2011; 21(2): 321-323. DOI: 10.1134/S1054661811020970.
© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20