(41-4) 07 * << * >> * Russian * English * Content * All Issues

Integrated fiber-based transverse mode converter
Gavrilov A.V., Pavelyev V.S.

Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

 PDF 797 kB

DOI: 10.18287/2412-6179-2017-41-4-510-514

Pages: 510-514.

Abstract:
A transverse mode converter based on a binary microrelief implemented directly on the end-face of a few-mode fiber was numerically investigated. The results of numerical simulation demonstrated the converter to form LP-11 and LP-21 modes with high efficiency, providing a more-than 92 % mode purity. Transformations of modes excited by a fiber microbending were also numerically investigated. The excited beams were shown to save their mode purity even in a strong bending as the arising parasitical modes were mostly unguided by the fiber. The resulting beam power and mode content were also demonstrated to depend on the beam and bending mutual orientation for beams with strong rotational symmetry.

Keywords:
transverse mode, binary microrelief, few-mode fiber, diffractive optical element.

Citation:
Gavrilov AV, Pavelyev VS. Integrated fiber-based transverse mode converter. Computer Optics 2017; 41(4): 510-514. DOI: 10.18287/2412-6179-2017-41-4-
510-514.

References:

  1. Kersey AD. A review of recent developments in fiber optic sensor technology. Optical Fiber Technology 1996; 2(3): 291-317. DOI: 10.1006/ofte.1996.0036.
  2. Soifer V, Golub M. Laser beam mode selection by computer generated holograms. Boca Raton: CRC Press; 1994. ISBN 0-8493-2476-9.
  3. Soifer VA, ed. Methods for Computer Design of Diffractive Optical Elements. New York: John Wiley & Sons; 2002. ISBN: 978-0-471-09533-0.
  4. Karpeev SV, Pavelyev VS, Khonina SN, Kazanskiy NL, Gavrilov AV, Eropolov VA. Fibre sensors based on transverse mode selection. J Mod Opt 2007; 54(6): 833-844. DOI: 10.1080/09500340601066125.
  5. Carpenter J, Wilkinson TD. Characterization of multimode fiber by selective mode excitation. Journal of Lightwave Technology 2012; 30(10): 1386-1392. DOI: 10.1109/JLT.2012.2189756.
  6. Soifer VA, Karpeev SV, Pavelyev VS, Kazanskiy NL, Gavrilov AV. Fibre-optic device for measuring transverse deformation vector [In Russian]. Pat RF of Invent N 2386105 C1 of April 10, 2010, Russian Bull of Inventions N10, 2010.
  7. Alferov SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807. DOI: 10.1364/JOSAA.31.000802.
  8. Karpeev SV, Khonina SN. Experimental excitation and detection of angular harmonics in a step-index optical fiber. Opt Mem Neural Networks 2007; 16(4): 295-300. DOI: 10.3103/S1060992X07040133.
  9. Gavrilov AV, Karpeev SV, Kazanskiy NL, Pavelyev VS, Duparre M, Luedge B, Schroeter S. Selective excitation of step-index fiber modes. Proc SPIE 2006; 6605: 660508. DOI: 10.1117/12.728461.
  10. Kokubun Y, Komo T, Takenaga K, Tanigawa S, Matsuo S. Selective mode excitation and discrimination of four-core homogeneous coupled multi-core fiber. Opt Express 2011; 19(26): B905-B914. DOI: 0.1364/OE.19.00B905.
  11. Pavelyev VS, Moiseev OYu, Volkov AV, Eropolov VA, Dmitriev SV, Karpeev SV, Artyushenko VG, Kashin VV. Realization and characterization of diffraction microrelief on the end faces of silver-halide waveguide. Proc SPIE 2008; 6994: 69940Q. DOI: 10.1117/12.780695.
  12. Chiou Y-P, Chang H. Efficient beam-propagation method based on Pad´e approximants in the propagation direction. Opt Lett 1997; 22(13): 949-951. DOI: 10.1364/OL.22.000949.
  13. Ma Ch, van Keuren E. A simple three dimensional wide-angle beam propagation method. Opt Express 2006; 14(11): 4668-4674. DOI: 10.1364/OE.14.004668.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20