Study on the Mainardi beam through the fractional Fourier transforms system
Habibi F., Moradi M., Ansari A.

 

Department of Physics, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
Department of Physics, Photonic Research Group, Shahrekord University, Shahrekord, Iran

Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Iran

 PDF

Abstract:
In this paper, we introduced the Mainardi beam and indicated its attributes under the Fractional Fourier transform for power variations of Fractional Fourier transform. The results represent that the behavior of the Mainardi beam is similar to that of the Airy beam. The obtained formula is a very powerful tool to describe propagation of a Mainardi beam through the FFT and the FrFT systems. An analytical expression of the Mainardi beam passing through an Fractional Fourier transform system presented. The influences of the Fractional Fourier transform, rational order of the Mittag-Leffler function (Fourier transform of the Mainardi function) on the normalized intensity distribution and characteristics of the Mainardi beam in the Fractional Fourier transform system examined. Power of the Fractional Fourier transform (p) and rational order of the Mittag-Leffler function (q) control characteristics of the Mainardi beam such as effective beam size, number, width, height, and orientation of the beam spot.

Keywords:
Wright function, Mainardi function, Mittag-Leffler function, Airy beam, Fractional Fourier transform.

Citation:
Habibi F, Moradi M, Ansari A. Study on the Mainardi beam through the fractional Fourier transforms system. Computer Optics 2018; 42(5): 751-757. DOI: 10.18287/2412-6179-2018-42-5-751-757.

References:

  1. Dai HT, Liu YJ, Luo D, Sun XW. Propagation dynamics of an Airy beam. Opt Lett 2010; 35(23): 4075-4077. DOI: 10.1364/OL.35.004075.
  2. Tang B, Jiang Ch, Zhu H. Fractional Fourier transform for confluent hypergeometric beams. Phys Lett A 2012; 376(38-39): 2627-2631. DOI: 10.1016/j.physleta.2012.07.017.
  3. Mendlovic D, Ozaktas HM. Fractional Fourier transforms and their optical implementation: I. J Opt Soc Am A 1993; 10(9): 1875-1881. DOI: 10.1364/JOSAA.10.001875.
  4. Ozaktas HM, Mendlovic D. Fractional Fourier transforms and their optical implementation. II. J Opt Soc Am A 1993; 10(12): 2522-2531. DOI: 10.1364/JOSAA.10.002522.
  5. Lohmann AW. Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Am A 1993; 10(10): 2181-2186. DOI: 10.1364/JOSAA.10.002181.
  6. Cai Y, Lin Q. Experimental observation of truncated fractional Fourier transform for a partially coherent Gaussian Schell-model beam. J Opt Soc Am A 2008; 25(8): 2001-2010. DOI: 10.1364/JOSAA.25.002001.
  7. Du X, Zhao D. Fractional Fourier transform of truncated elliptical Gaussian beams. Appl Opt 2006; 45(36): 9049-9052. DOI: 10.1364/AO.45.009049.
  8. Zhou G. Fractional Fourier transform of a higher-order cosh-Gaussian beam. J Mod Opt 2009; 56(7): 886-892. DOI: 10.1080/09500340902783816.
  9. Gao Y-Q, Zhu B-Q, Liu D-Z, Liu X-F, Lin Z-Q. Characteristics of beam aligmenet in a high power four-pass laser amplifier. Appl Opt 2009; 48(8): 1591-1597. DOI: 10.1364/AO.48.001591.
  10. Erden MF, Ozaktas HM, Mendlovic D. Propagation of mutual intensity expressed in terms of the fractional Fourier transform. J Opt Soc Am A 1996; 13(5): 1068-1071. DOI: 10.1364/JOSAA.13.001068.
  11. Yoshimura H, Iwai T. Properties of the Gaussian schell model source field in a fractional Fourier plane. J Opt Soc Am A 1997; 14(12): 3388-3393. DOI: 10.1364/JOSAA.14.003388.
  12. Lin Q, Cai Y. Tensor ABCD law for partially coherent twisted anisotropic Gaussian-schell model beams. Opt Lett 2002; 27(4): 216-218. DOI: 10.1364/OL.27.000216.
  13. Cai Y, Ge D, Lin Q. Fractional Fourier transform for partially coherent and partially polarized Gaussian-schell model beams. J Opt A 2003; 5(5): 453-459. DOI: 10.1088/1464-4258/5/5/304.
  14. Dragoman D, Dragoman M, Brenner K-H. Variant fractional Fourier transformer for optical pulses. Opt Lett 1999; 24(14): 933-935. DOI: 10.1364/OL.24.000933.
  15. Wang F, Cai Y. Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics. J Opt Soc Am A 2007; 24(7): 1937-1944. DOI: 10.1364/JOSAA.24.001937.
  16. Zhou G, Chen R, Chu X. Fractional Fourier transform of Airy beams. Appl Phys B 2012; 109(4): 549-556. DOI: 10.1007/s00340-012-5117-3.
  17. Khonina SN, Ustinov AV. Fractional Airy beams. J Opt Soc Am A 2017; 34(11): 1991-1999. DOI: 10.1364/JOSAA.34.001991.
  18. Belafhal L, Ez-Zariy L, Hennani S, Nebdi H. Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams. Opt Photonics J 2015; 5(7), 234-246. DOI: 10.4236/opj.2015.57023.
  19. Mainardi F. Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press; 2010. ISBN: 978-1-84816-329-4.
  20. Morris JE, Mazilu M, Baumgartl J, Cizmár T, Dholakia K. Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength. Opt Express 2009; 17(15): 13236-13245. DOI: 10.1364/OE.17.013236.
  21. Gradshteyn IS, Ryzhik IM. Tables of integrals, series and products. New York: Academic Press; 1980. ISBN: 978-0-12-294760-5.
  22. Mittag-Leffler G. Sur la Nouvelle fonction Ea(x). Comptes Rendus de l'Académie des Sciences – Series I – Mathematics 1903; 137: 554-558.
  23. Wiman A. Über den Fundamentalsatz in der Teorie der Funktionen Ea(x). Acta Math 1905; 29(1): 191-201.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20