Tree-serial parametric dynamic programming with flexible prior model for image denoising
Thang P.C., Kopylov A.V.
National Research University Higher School of Economics, 20Myasnitskaya Street, Moscow, Russia
The University of Da Nang – University of Science and Technology, 54 Nguyen Luong BangStreet, Da Nang, Viet Nam
Tula State University, pr. Lenina 92, Tula, Russia
PDF
Abstract:
We consider here image denoising procedures, based on computationally effective tree-serial parametric dynamic programming procedures, different representations of an image lattice by the set of acyclic graphs and non-convex regularization of a new type which allows to flexibly set a priori preferences. Experimental results in image denoising, as well as comparison with related methods, are provided. A new extended version of multi quadratic dynamic programming procedures for image denoising, proposed here, shows an improved accuracy for images of a different type.
Keywords:
Image denoising, Dynamic programming, Bayesian optimization, Markov random fields (MRFs), Gauss-Seidel iteration method.
Citation:
Thang PC, Kopylov AV. Tree-serial parametric dynamic programming with flexible prior model for image denoising. Computer Optics 2018; 42(5): 838-845. DOI: 10.18287/2412-6179-2018-42-5-838-845.
References:
- Wang Z, Bovik AC. Modern image quality assessment. Synthesis Lectures on Image, Video, and Multimedia Processing. Morgan & Claypool Publishers; 2006. ISBN: 978-1-59829-022-6.
- Chambolle A, Caselles V, Novaga M. Total variation in imaging. In Book: Scherzer O, ed. Handbook of mathematical methods in imaging. New York: Springer Science+Business Media LLC; 2011: 1016-1057. DOI: 10.1007/978-0-387-92920-0_23.
- Chaudhury K, Sage D, Unser M. Fast O(1) bilateral filtering using trigonometric range kernels. IEEE Transactions on Image Processing 2011; 20(12): 3376-3382. DOI: 10.1109/TIP.2011.2159234.
- Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 1992; 60(1-4): 259-268. DOI: 10.1016/0167-2789(92)90242-F.
- Wang Y, Chen W, Zhou S, Yu T, Zhang Y. MTV: modified total variation model for image noise removal. Electronics Letters 2011; 47(10): 592-594. DOI: 10.1049/el.2010.3505.
- You Y-L, Kaveh M. Fourth order partial differential equations for noise removal. IEEE Transactions on Image Processing 2000; 9(10): 1723-1730. DOI: 10.1109/83.869184.
- Wang YQ, Guo JC, Chen WF, Zhang W. Image denoising using modified Perona-Malik model based on directional Laplacian. Signal Processing 2013; 93(9): 2548-2558. DOI: 10.1016/j.sigpro.2013.02.020.
- Hammersley JM, Clifford PE. Markov random fields on finite graphs and lattices. Berkeley preprint; 1971.
- Besag JE. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B 1974; 36(2): 192-236.
- Nikolova M, Michael K, Tam C-P. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Transactions on Image Processing 2010; 19(12): 3073-3088. DOI: 10.1109/TIP.2010.2052275.
- Pham CT, Kopylov AV. Parametric procedures for image denoising with flexible prior model. Proceedings of the Seventh Symposium on Information and Communication Technology (SoICT '16) 2016: 294-301. DOI: 10.1145/3011077.3011099.
- Mottl VV, Blinov AB, Kopylov AV, Kostin AA. Optimization techniques on pixel neighborhood graphs for image processing. In Book: Jolion J-M, Kropatsch WG, eds. Graph-based representations in pattern recognition. Vienna: Springer-Verlag; 1998: 135-145. DOI: 10.1007/978-3-7091-6487-7_14.
- Pham CT. Image processing procedures based on multi-quadratic dynamic programming. Informatica 2017; 41(2): 255-256.
- Pham CT, Kopylov AV. Multi-quadratic dynamic programming procedure of edge-preserving denoising for medical images. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2015; XL-5/W6: 101-106. DOI: 10.5194/isprsarchives-XL-5-W6-101-2015.
- Bertelè U, Brioschi F. On non-serial dynamic programming. Journal of Combinatorial Theory, Series A 1973; 14(2): 137-148. DOI: 10.1016/0097-3165(73)90016-2.
- Mottl V, Kopylov AV, Kostin A, Yermakov A, Kittler J. Elastic transformation of the image pixel grid for similarity based face identification. Proceedings of 16th International Conference on Pattern Recognition 2002; 3: 549-552.
- Dvoenko SD. Clustering sets based on distances and proximities between its elements [In Russian]. Sibirskii Zhurnal Industrial'noi Matematiki, 2009; 12(1): 61-73.
- Pham CT, Kopylov AV, Dvoenko SD. Edge-preserving denoising based on dynamic programming on the full set of adjacency graphs. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2017; XLII-2/W4: 55-60. DOI: 10.5194/isprs-archives-XLII-2-W4-55-2017.
- Zosso D, Bustin A. A primal-dual projected gradient algorithm for efficient Beltrami regularization. Tech Rep UCLA CAM Report 14-52 2014.
- Kopylov AV. Parametric dynamic programming procedures for edge preserving in signal and image smoothing. Pattern Recognition and Image Analysis 2005; 15(1): 227-230.
- Kopylov A. Tree-serial dynamic programming for image processing. Proceedings of 19th International Conference on Pattern Recognition 2008: 1-4. DOI: 10.1109/ICPR.2008.4761407.
- Kopylov A, Krasotkina O, Pryimak A, Mottl V. A signal processing algorithm based on parametric dynamic programming. In Book: Elmoataz A, Lezoray O, Nouboud F, Mammass D, Meunier J, eds. Image and Signal Processing. Berlin, Heidelberg: Springer; 2010: 280-286. DOI: 10.1007/978-3-642-13681-8_33.
- Kalman RE, Bucy RS. New results in linear filtering and prediction theory. Journal of Basic Engineering 1961; 83(1): 95-108. DOI: 10.1115/1.3658902.
- Kopylov AV. Rowwise aggregation of variables in the dynamic programming algorithm for image processing. Pattern Recognition and Image Analysis 2008; 18(2): 309-313. DOI: 10.1134/S105466180802017X.
- Dvoenko SD. Recognition of dependent objects based on acyclic Markov models. Pattern Recognition and Image Analysis 2012; 22(1): 28-38. DOI: 10.1134/S1054661812010130.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20