Avalanche instability of the orbital angular momentum higher order optical vortices
Volyar A.V., Bretsko M.V., Akimova Ya.E., Egorov Yu.A.

 

Physics and Technology Institute (Academic Unit) of V.I. Vernadsky Crimean Federal University, Academician Vernadsky 4, 295007, Simferopol, Republic of Crimea, Russia

 PDF

Abstract:
Theoretical and experimental studies of spectra of optical vortices and orbital angular momentum (OAM) carried by combined singular beams are presented. The combined beams are composed of superposition of Laguerre-Gauss or Bessel-Gauss modes with "resonant" amplitudes depending on a real parameter. If the parameter is an integer, then the OAM of the singular beam is equal to this number. If the real parameter is fractional, then the OAM can be either substantially larger or much smaller than the integer closest to the parameter value. For a non-integer value of the beam parameter, a large number of beams from superposition with integer topological charges contribute to its amplitude. For an integer beam parameter, the contribution to the amplitude is made by only one mode with a topological charge equal to the value of the beam parameter. In the experiment, singular beams with fractional OAMs were shaped using a binary amplitude diffraction grating consistent with the phase function of the singular beam. The measured correlation degree between the initial beam and the beam reconstructed from the vortex spectrum was no less than 90%.

Keywords:
diffractive optics, image processing, optical vortices, orbital angular momentum, moments of intensity.

Citation:
Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Avalanche instability of the orbital angular momentum higher order optical vortices. Computer Optics 2019; 43(1): 14-24. DOI: 10.18287/2412-6179-2019-43-1-14-24.

References:

  1. Gbur GJ. Singular optics. New York: CRC Press; 2016. ISBN: 978-1-4665-8077-0.
  2. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton, London, New York: Taylor & Francis Group; 2018. ISBN: 978-1-138-54211-2.
  3. Allen L, Padget M. The orbital angular momentum of light: An introduction. In Book: Torres J, Torner L, eds. Twisted photons: Applications of light with orbital angular momentum. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co KGaA; 2011. Ch 1. DOI: 10.1002/9783527635368.ch1.
  4. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren YX, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon 2012; 6: 488-496. DOI: 10.1038/nphoton.2012.138.
  5. Wright EM. Optical vortex cat states and their utility for creating macroscopic superpositions of persistent flows. In Book: Torres J, Torner L, eds. Twisted photons: Applications of light with orbital angular momentum. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co KGaA; 2011. Ch 10. DOI: 10.1002/9783527635368.ch10.
  6. Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412: 313-316. DOI: 10.1038/35085529.
  7. Soifer VA, Golub MA. Laser beam mode selection by computer-generated holograms. Boca Raton: CRC Press; 1994. ISBN: 978-0-8493-2476-5.
  8. Abramochkin Е, Volostnikov V. Beam transformations and non-transformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
  9. Abramochkin EG, Volostnikov VG. Spiral light beams. Physics–Uspekhi 2004; 47(12): 1177-1203. DOI: 10.1070/PU2004v047n12ABEH001802.
  10. Khonina SN, Kotlyar V.V., Soifer V.A., Jefimovs K., Turunen J.. Generation and selection of laser beams represented by a superposition of two angular harmonics. J Mod Opt 2004; 51(5): 761-773. DOI: 10.1080/09500340408235551.
  11. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode selfimaging. In Book: Yasin M, Harun SW, Arof H, eds. Recent progress in optical fiber research. Rijeka, Croatia: InTech Open; 2012. Ch 15. DOI: 10.5772/28067.
  12. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory and Neural Networks 2001; 10(4): 241-255.
  13. Kirilenko MS, Khonina SN. Information transmission using optical vortices. Optical Memory and Neural Networks 3013; 22(2): 81-89. DOI: 10.3103/S1060992X13020069.
  14. M. Berry, Optical vortices evolving from helicoidal integer and fractional phase steps, J Opt A 2004; 6(2): 259-269. DOI: 10.1088/1464-4258/6/2/018.
  15. Martinez-Castellanos I, Gutiérrez-Vega JC. Vortex structure of elegant Laguerre–Gaussian beams of fractional order. J Opt Soc Am A 2013; 30(3): 2395-2300. DOI: 10.1364/JOSAA.30.002395.
  16. McGloin D, Dholakia K. Bessel beams: Diffraction in a new light. Contemporary Physics 2005; 46(1): 15-28. DOI: 10.1080/0010751042000275259.
  17. Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New Journal of Physics 2004; 6: 71. DOI: 10.1088/1367-2630/6/1/071.
  18. Volyar AV, Egorov YuA. Super pulses of orbital angular momentum in fractional-order spiroid vortex beams. Opt Lett 2018; 43(1): 74-77. DOI: 10.1364/OL.43.000074.
  19. Gutiérrez-Vega JC. Fractionalization of optical beams: II. Elegant Laguerre–Gaussian modes. Opt Express 2007, 15(10): 6300. DOI: 10.1364/OE.15.006300.
  20. Gutiérrez-Vega JC, López-Mariscal C. Nondiffracting vortex beams with continuous orbital angular momentum order dependence. J Opt A 2008; 10(1): 015009. DOI: 10.1088/1464-4258/10/01/015009.
  21. Fadeyeva TA, Rubass AF, Aleksandrov RV, Volyar AV. Does the optical angular momentum change smoothly in fractional-charged vortex beams? J Opt Soc Am B 2014; 31(4): 798-805. DOI: 10.1364/JOSAB.31.000798.
  22. Alexeyev CN, Egorov YuA, Volyar AV. Mutual transformations of fractional-order and integer-order optical vortices. Phys Rev A 2017; 96: 063807. DOI: 10.1103/PhysRevA.96.063807.
  23. Berry MV. Paraxial beams of spinning light. Proc SPIE 1998; 3487: 6-11. DOI: 10.1117/12.317704.
  24. Götte J, O’Holleran K, Preece D, Flossmann F, Franke-Arnold S, Barnett SM, Padgett MJ. Light beams with fractional orbital angular momentum and their vortex structure. Opt Express 2008; 16(2): 993-1006. DOI: 10.1364/OE.16.000993.
  25. Watson GN. A treatise on the theory of Bessel functions. 2nd ed. Cambridge, UK: Cambridge University Press; 1995. ISBN: 978-0-521-48391-9.
  26. Alperin SN, Niederiter RD, Gopinath JT, Siements KE. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt Lett 2016; 41(21): 5019-5022. DOI: 10.1364/OL.41.005019.
  27. Stoyanov L, Topuzoski S, Stefanov I, Janicijevic L, Dreischuh A. Far field diffraction of an optical vortex beam by a fork-shaped grating. Opt Commun 2013; 350: 301-308. DOI: 10.1016/j.optcom.2015.04.020.
  28. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Beyond the light intensity or intensity moments and measurements of the vortex spectrum in complex light beams [In Russian]. Computer Optics 2018; 42(5): 736-743. DOI: 10.18287/2412-6179-2017-42-5-736-743.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20