Video images compression and restoration methods based on optimal sampling
Drynkin V.N., Nabokov S.A., Tsareva T.I.

 

State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia

 PDF

Abstract:
The study proposes video images compression and restoration methods based on multidimensional sampling theory that provide four-fold video compression and subsequent real-time restoration with loss levels below visually perceptible threshold. The proposed methods can be used separately or along with any other video compression techniques, thus providing additional quadruple compression.

Keywords:
video image compression, image reconstruction-restoration, three-dimensional image processing, quincuncial sampling, spatial filtering, spatial resolution.

Citation:
Drynkin VN, Nabokov SA, Tsareva TI. Video images compression and restoration methods based on optimal sampling. Computer Optics 2019; 43(1): 115-122. DOI: 10.18287/2412-6179-2019-43-1-115-122.

References:

  1. International Telecommunication Union. Image parameter values for high dynamic range television for use in the production and international program exchange, International Telecommunication Union, ITU-R BT.2100-1, 2017. Source: < http://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2100-1-201706-I!!PDF-E.pdf >.
  2. Dvorkovich VP, Dvorkovich AV, Gryzov YuG. New possibilities of video encoding standard HEVC [in Russian]. Tsifrovaya obrabotka signalov 2013; 3: 2-8. Source: < http://www.dspa.ru/articles/year2013/jour13_3/art13_3_1.pdf >.
  3. Filippov AK, Rufitskiy VA. Method of encoding digital images using discrete wavelet transformation of adaptively defined basis [in Russian], Pat RF of Invent N2429541 of September 20, 2011, Russian Bull of Inventions N26, 2011.
  4. Shoberg AG, Shoberg KA. Method of direct and inverse fast two-dimensional wavelet-transform [in Russian], Pat RF of Invent N2540781 of February 20, 2015, Russian Bull of Inventions N4, 2015.
  5. Andreyko DN, Komarov PYu, Ignatov FM. Basic methods of data compression in the transmission of digital videos [in Russian]. T-Comm – Telekommunikatsii i Transport 2013; 9: 12-15.
  6. Drynkin VN, Tsareva TI. Image compression methods and apparatus. Image restoration method and apparatus [in Russian], Pat RF of Invent N2669874 of September 15, 2017, Russian Bull of Inventions N29, 2018.
  7. Drynkin VN. Development and application of multidimensional digital filters [in Russian]. Moscow: “GosNIIAS” Publisher; 2016.
  8. Borodyanskiy AA. Hypertriangular sampling of n-dimensional messages [in Russian]. Radiotekhnika 1985; 4: 49-52.
  9. Borodyanskiy AA. Optimal sampling of moving images, [in Russian]. Elektrosvyaz' 1983; 3: 35-39.
  10. Tsukkerman II (eds.). Digital Coding of Television Images [in Russian]. Moscow: “Radio i svyaz'” Publisher; 1981.
  11. Dudgeon DE, Mersereau RM. Multidimensional Digital Signal Processing. Englewood Cliffs, N.J.: Prentice-Hall, 1984.
  12. Yaroslavskiy LP. Introduction to digital image processing [in Russian]. Moscow: “Sovetskoye radio” Publisher; 1979.
  13. Entezari A. Optimal sampling lattices and trivariate box splines. Ph.D. Dissertation. Simon Fraser University; 2007.
  14. Zhang L, Wu X. Image interpolation via directional filtering and data fusion. IEEE Trans. Image Process. 2006; 15(8): 2226-2238.
  15. Vazquez C, Dubois E, Konrad J. Reconstruction of nonuniformly sampled images in spline spaces. IEEE Trans. Image Process. 2005; 14(6): 713-725.
  16. Zhang L, Wu X. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans. Image Process. 2008; 17(6): 887-896.
  17. Drynkin VN, Tsareva TI. Videosystem resolution increase method [in Russian]. Pat RF of Invent N2549353 of April 27, 2015, Russian Bull of Inventions N12, 2015.
  18. Drynkin VN, Tsareva TI. Image resolution increasing method [in Russian]. Tsifrovaya obrabotka signalov 2014; 3: 9-14.
  19. Rabiner LR, Gold B. Theory and application of digital signal processing. Prentice-Hall, Inc, Englewood Cliffs, New Jersey; 1975.
  20. Xiph.org. Video test media [derf’s collection]. Source: < https://media.xiph.org/video/derf >.
  21. Ultra Video Group. Test sequences. Source: < http://ultravideo.cs.tut.fi/#testsequences >.
  22. Harmonic Inc. Free 4K demo footage. Source: < https://www.harmonicinc.com/4k-demo-footage-download >.
  23. FFmpeg group. FFmpeg 3.4 2017. Source: < http://ffmpeg.org >.
  24. Pratt WK. Digital image processing. – N.Y./Chichester/Brisbane/Toronto: John Wiley and Sons, Inc; 1978.
  25. International Telecommunication Union. Methodology for the subjective assessment of the quality of television pic-tures, International Telecommunication Union, ITU-R BT.500-13, 2012. Source: < http://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.500-13-201201-I!!PDF-E.pdf >.
  26. Monich YuI, Starovoytov VV. Image quality evaluation for image analysis [in Russian]. Iskusstvenniy intellekt 2008; 4: 376-386. Source: < http://dspace.nbuv.gov.ua/bitstream/handle/123456789/7481/046-Monich.pdf >.
  27. Sheikh HR, Bovik AC. Image Information and Visual Quality. IEEE Trans. Image Process 2006; 15(2): 430-444.
  28. Li Z, Aaron A, Katsavounidis I, Moorthy A, Manohara M. Toward a practical perceptual video quality metric. Netflix Technology Blog Jun 5, 2016. Source: < https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652 >.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20