(43-4) 02 * << * >> * Russian * English * Content * All Issues

Sharp focus of a circularly polarized optical vortex at the output of a metalens illuminated by linearly polarized light

A.G. Nalimov1,2, V.V. Kotlyar1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia,
Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia

 PDF, 1188 kB

DOI: 10.18287/2412-6179-2019-43-4-528-534

Pages: 528-534.

Full text of article: Russian language.

Abstract:
A three-level spiral metalens in an amorphous silicon film is designed. The metalens relief consists of two subwavelength gratings with a 220-nm period (for 633 nm wavelength) and depths of 90 and 170 nm. The metalens forms a left-hand circular polarized optical vortex with topological charge 2 when illuminated by a linearly polarized plane wave. The intensity distribution at a distance of 633 nm is in the form of a subwavelength circle, whereas the longitudinal projection of the Pointing vector has negative values on the optical axis, meaning that a backward energy flow occurs. Two subwavelength gratings with different depth act as quarter-wave plates, transforming linearly polarized light into circularly polarized light with a phase delay of (lambda)/2. This metalens combines functionalities of three optical elements: a quarter-wave plate, a spiral phase plate, and a high-NA diffraction metalens (NA close to unity).

Keywords:
optical vortex, polarization, quarter-wave plate, backward energy flow, metalens

Citation:
Nalimov AG , Kotlyar VV. Sharp focus of a circularly polarized optical vortex at the output of a metalens illuminated by linearly polarized light. Computer Optics 2019; 43(4): 528-534. DOI: 10.18287/2412-6179-2019-43-4-528-534.

References:

  1. Bomzon Z, Biener G, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt Lett 2002; 27(5): 285-287.
  2. Bomzon Z, Kleiner V, Hasman E. Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings. Opt Lett 2001; 26(18): 1424-1426.
  3. Ghadyani Z, Vartiainen I, Harder I, Iff W, Berger A, Lindlein N, Kuittinen M. Concentric ring metal grating for generating radially polarized light. Appl Opt 2011; 50(16): 2451-2457.
  4. Lin J, Genevet P, Kats MA, Antoniou N, Capasso F. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett 2013; 13(9): 4269-4274.
  5. Genevet P, Capasso E. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys 2015; 78(2): 024401.
  6. Päivänranta B, Passilly N, Pietarinen J, Laakkonen P, Kuittinen M, Tervo J. Low-cost fabrication of form-birefringent quarter-wave plates. Opt Express 2008; 16(21): 16334-16342.
  7. Lin M-Y, Tsai T-H, Kang YL, Chen Y-C, Huang Y-H, Chen Y-J, Fang X, Lin HY, Choi W-K, Wang LA, Wu C-C, Lee S-C. Design and fabrication of birefringent nano-grating structure for circularly polarized light emission. Opt Express 2014; 22(7): 7388-7398.
  8. Lin M-Y, Tsai T-H, Hsiao L-J, Tu W-C, Wu S-H, Wang LA, Lee S-C, Lin HY. Design and fabrication of nano-structure for three-dimensional display application. IEEE Photonics Technol Lett 2016; 28(8): 884-886.
  9. Levy U, Tsai C-H, Pang L, Fainman Y. Engineering space-variant inhomogeneous media for polarization control. Opt Lett 2004; 29(15): 1718-1720.
  10. Lerman GM, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Opt Lett 2008; 33(23): 2782-2784.
  11. Kotlyar VV, Nalimov AG, Stafeev SS, Hu Changyu, O'Faolain L, Kotlyar MV, Gibson D, Song S. Thin high numerical aperture metalens. Opt Express 2017; 25(7): 8158-8167. DOI: 10.1364/OE.25.008158.
  12. Kotlyar VV, Stafeev SS, Nalimov AG, O'Faolain L. Subwavelength grating-based metalens for focusing of laser light. Appl Phys Lett 2019; 114(14): 141107. DOI: 10.1063/1.5092760.
  13. Kotlyar VV, Stafeev SS, Nalimov AG, O'Faolain L. Single metalens for generating polarization and phase singularities leading to a reverse flow of energy. J Opt 2019; 21(5): 055004. DOI: 10.1088/2040-8986/ab14c8.
  14. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  15. Levy U, Tsai CH, Pang L, Fainman Y. Engineering space-variant inhomogeneous media for polarization control. Opt Lett 2004; 29(15): 1718-1720.

     


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20