(43-4) 08 * << * >> * Russian * English * Content * All Issues

Investigation of the topological charge stability for multi-ringed Laguerre–Gauss vortex beams to random distortions

M.S. Kirilenko1, S.N. Khonina1,2

Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS

 PDF, 1066 kB

DOI: 10.18287/2412-6179-2019-43-4-567-576

Pages: 567-576.

Full text of article: Russian language.

Abstract:
We performed a comparative numerical study of the conservation of properties of individual Laguerre-Gauss beams and their superpositions in a random environment. The simulation is based on the extended Huygens-Fresnel principle. Studies have shown that increasing the number of rings of Laguerre-Gauss modes with the same vortex order allows one to increase the ratio of the energy of the minimum informative coefficient to the energy of the maximum parasitic coefficient, which is important when detecting information encoded in the coefficients. In addition, an increase in the number of rings partially compensates for the stronger effect of random fluctuations on beams with high topological charges. Such a positive impact can be explained by the structural redundancy of multi-ring distributions (the vortex phase structure of the beam is repeated in each ring). A similar result was obtained for beams corresponding to a two-mode superposition. The best result on information preservation was obtained for the superposition with duplication of information in complex conjugate coefficients, and the best ratio of informative energy to parasitic one was obtained for beams with the largest area.

Keywords:
Laguerre-Gauss beams, optical vortices, topological charge, random fluctuations, the extended Huygens-Fresnel principle

Citation:
Kirilenko MS, Khonina SN. Investigation of the topological charge stability for multi-ring Laguerre–Gauss vortex beams to random distortions. Computer Optics 2019, 43(4): 567-576. DOI: 10.18287/2412-6179-2019-43-4-567-576.

References:

  1. Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: a review (invited review). Progress in Electromagnetics Research 2015; 150: 123-143. DOI: 10.2528/PIER15010802.
  2. Korotkova O. Random light beams: theory and applications. Boca Raton, FL: CRC Press; 2013. ISBN: 978-1-4398-1950-0.
  3. Majumdar AK, Ricklin JC. Free-space laser communications: principles and advances. Vol 2. New York: Springer Science & Business Media; 2008. ISBN: 978-0-387-28652-5.
  4. Mishchenko MI. Electromagnetic scattering by particles and particle groups: An introduction. Cambridge: Cambridge University Press; 2014. ISBN: 978-0-521-51992-2.
  5. Tatarskii VI. Wave propagation in a turbulent medium. New York: McGraw-Hill; 1961.
  6. Dainty JC, ed. Laser speckle and related phenomenon. Berlin: Springer; 1975.
  7. Ishimaru A. Wave propagation and scattering in random media. New York: Academic Press; 1978. ISBN: 978-0-12-374701-3.
  8. Fante RL. Wave propagation in random media: a systems approach. Progress in Optics 1985; 22: 341-398. DOI: 10.1016/S0079-6638(08)70152-5.
  9. Andrews LC, Phillips RL. Laser beam propagation through random media. Bellingham, Washington: SPIE Press; 1998.
  10. Gbur G, Wolf E. Spreading of partially coherent beams in random media. J Opt Soc Am A 2002; 19(8): 1592-1598.
  11. Eyyuboglu HT, Baykal Y, Cai Y. Complex degree of coherence for partially coherent general beams in atmospheric turbulence. J Opt Soc Am A 2007; 24(9): 2891-2901.
  12. Wang D, Wang F, Cai Y, Chen J. Evolution properties of the complex degree of coherence of a partially coherent Laguerre-Gaussian beam in turbulent atmosphere. J Mod Opt 2012; 59(4): 372-380.
  13. Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A 2008; 25: 225-230. DOI: 10.1364/JOSAA.25.000225.
  14. Cai Y, He S. Propagation of various dark hollow beams in a turbulent atmosphere. Opt Express 2006; 14(4): 1353-1367.
  15. Eyyuboglu HT. Propagation of higher order Bessel-Gaussian beams in turbulence. Appl Phys B 2007; 88(2): 259-265.
  16. Chu X. Evolution of an Airy beam in turbulence. Opt Lett 2011; 36(14): 2701-2703.
  17. Du X, Zhao D, Korotkova O. Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere. Opt Express 2007; 15(25): 16909-16915.
  18. Wang H, Liu D, Zhou Z. The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere. Appl Phys B 2010; 101(1-2): 361-369.
  19. Ji X, Pu Z. Effective Rayleigh range of Gaussian array beams propagating through atmospheric turbulence. Opt Commun 2010; 283(20): 3884-3890.
  20. Chen C, Yang H, Kavehrad M, Zhou Z. Propagation of radial Airy array beams through atmospheric turbulence. Optics and Lasers in Engineering 2014; 52: 106-114.
  21. Soskin MS, Vasnetsov MV. Singular optics. In book: Wolf E, ed. Progress in Optics. Chap 4. Vol 42. Amsterdam, North Holland: Elsevier Science; 2001: 219-276.
  22. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willer AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  23. Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas'ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 2004; 12: 5448-5456.
  24. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 2012; 6: 488-496.
  25. Khonina SN. Vortex laser beams and their application. In Book: Soifer VA, ed. Nanophotonics and its application in remote sensing systems. Samara: "Novaya Tehnika" Publisher; 2016; Ch 4: 275-351.
  26. Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  27. Kogelnik H, Li T. Laser beams and resonators. Appl Opt 1966; 5(10): 1550-1567.
  28. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189.
  29. Gatto A, Tacca M, Martelli P, Boffi P, Martinelli M. Free-space orbital angular momentum division multiplexing with Bessel beams. J Opt 2011; 13(6): 064018.
  30. Mendez G, Fernando-Vazquez A, Lopez RP. Orbital angular momentum and highly efficient holographic generation of nondiffractive TE and TM vector beams. Opt Commun 2015; 334: 174-183.
  31. Kharitonov SI, Volotovsky SG, Khonina SN. Calculation of the angular momentum of an electromagnetic field inside a waveguide with absolutely conducting walls: ab initio. Computer Optics 2018; 42(4): 588-605. DOI: 10.18287/2412-6179-2018-42-4-588-605.
  32. Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys Rev Lett 2005; 94(15): 153901.
  33. Cheng M, Guo L, Li J, Zhang Y. Channel capacity of the OAM-based free-space optical communication links with Bessel–Gauss beams in turbulent ocean. IEEE Photonics Journal 2016; 8(1): 1-11.
  34. Guan B, Scott RP. Qin C, Fontaine NK, Su T, Ferrari C, Cappuzzo M, Klemens F, Keller B, Earnshaw M, Yoo SJB. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic inte-grated circuit. Opt Express 2014; 22(1): 145-156. DOI: 10.1364/OE.22.000145.
  35. Wang T, Pu J, Chen Z. Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere. Opt Commun 2009; 282(7): 1255-1259. DOI: 10.1016/j.optcom.2008.12.027.
  36. Malik M, O'Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery MPJ, Padgett MJ, Boyd RW. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 2012; 20(12): 13195-13200. DOI: 10.1364/OE.20.013195.
  37. Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8.
  38. Lutomirski RF, Yura HT. Propagation of a finite optical beam in an inhomogeneous medium. Appl Opt 1971; 10(7): 1652-1658.
  39. Feizulin ZI, Kravtsov YA. Broadening of a laser beam in a turbulent medium. Radiophysics and Quantum Electronics 1967; 10(1): 33-35.
  40. Bekshaev A, Soskin M, Vasnetsov M. Paraxial light beams with angular momentum. Nova Science; 2008.
  41. Torres JP. Multiplexing twisted light. Nat Photon 2012; 6: 420-422. DOI: 10.1038/nphoton.2012.154.
  42. Kirilenko MS, Khonina SN. Information transmission using optical vortices. Optical Memory and Neural Networks 2013; 22(2): 81-89. DOI: 10.3103/S1060992X13020069.
  43. Almazov AA, Khonina SN, Kotlyar VV. Using phase diffraction optical elements to shape and select laser beams consisting of a superposition of an arbitrary number of angular harmonics. J Opt Technol 2005; 72(5): 391-399. DOI: 10.1364/JOT.72.000391.
  44. Kotlyar VV, Khonina SN, Soifer VA. Light field decomposition in angular harmonics by means of diffractive optics. J Mod Opt 1998; 45(7): 1495-1506. DOI: 10.1080/09500349808230644.
  45. Khonina SN, Kotlyar VV, Soifer VA, Pääkkönen P, Simonen J, Turunen J. An analysis of the angular momentum of a light field in terms of angular harmonics. J Mod Opt 2001; 48(10): 1543-1557. DOI: 10.1080/09500340108231783.
  46. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Optics and Lasers in Engineering 2015; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
  47. Prudnikov AP, Brychkov YuA, Marichev OI. Integrals and series. Vol. 2. Special functions. Amsterdam: Gordon & Breach Science Publishers Ltd; 1986. ISBN: 978-2-88124-097-3.
  48. Young CY, Gilchrest YV, Macon BR. Turbulence-induced beam spreading of higher-order mode optical waves. Opt Eng 2002; 41: 1097-1103.




© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20