(43-5) 09 * << * >> * Russian * English * Content * All Issues
Selective modification of dual phase steel DP 1000 by laser action using diffractive optical element
S.P. Murzin1,2, M.V. Blokhin1
1 Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34,
2 TU Wien, Institute of Production Engineering and Photonic Technologies,
1060, Vienna, Austria, Getreidemarkt 9
PDF, 2167 kB
DOI: 10.18287/2412-6179-2019-43-5-773-779
Pages: 773-779.
Full text of article: Russian language.
Abstract:
Experimental studies of shaping a CO2 laser beam with a reflective diffractive optical element have been performed. To increase the aperture of the initial beam, we used a collimator containing a system of two plane-convex spherical ZnSe lenses. For the focal line formed with the diffractive optical element in combination with the collimator, in addition to a 1.3-fold increase in the length, a decrease in the maximum beam power density was found to occur in the laser spot. It was demonstrated that under the laser action it is possible to generate in a two-phase steel sample regions of full hardening, selective hardening, and annealing, alongside the initial structure. The formation of such structures is due to the distribution pattern of temperature fields and a difference in the cooling rate across the volume of the heat affected zone.
Keywords:
laser action, beam shaping, diffractive optical element, collimator, dual-phase steel, selective modification, structure.
Citation:
Murzin SP, Blokhin MV. Selective modification of dual phase steel DP 1000 by laser action using diffractive optical element. Computer Optics 2019; 43(5): 773-779. DOI: 10.18287/2412-6179-2019-43-5-773-779.
Acknowledgements:
The study was supported by the Russian Foundation for Basic Research, (Project No. 18-58-14001). Austrian Science Fund (FWF): Project number I 3920.
References:
- Kannatey-Asibu E Jr. Principles of laser materials processing. Hoboken, New Jersey, US: John Wiley & Sons; 2009.
- Ion JC. Laser processing of engineering materials: principles, procedure and industrial application. Amsterdam, Oxford: Elsevier/Butterworth-Heinemann; 2005.
- Schaaf P. Laser processing of materials: fundamentals, applications and developments. Berlin, Heidelberg: Springer-Verlag; 2010.
- Ready JF, ed, Farson DF. LIA handbook of laser materials processing. Orlando, US: Laser Institute of America; 2001.
- Dahotre NB, Harimkar SP. Laser fabrication and machining of materials. New York, US: Springer Science + Business Media; 2008.
- Steen WM, Mazumder J. Laser material processing. 4th ed. London, UK: Springer; 2010.
- Bergmann HW. Short term annealing by laser treatment Proc SPIE 1987; 801: 296-301. DOI: 10.1117/12.941256.
- Minamida K, Kido M, Ishibashi A, Mogami S, Sasaki S. Surface annealing of steel wires for automo-tive tires by CO2 laser with cone shaped focusing mirror. International Congress on Applications of Lasers & Electro-Optics. 1990; 71: 460-468. DOI: 10.2351/1.5058389.
- Nolan SR. Method for laser annealing. U.S. Patent 7,063,755 of June 20, 2006.
- Neugebauer R, Scheffler S, Poprawe R, Weisheit A. Local laser heat treatment of ultra high strength steels to improve formability. Prod Eng 2009; 3(4-5): 347-351. DOI: 10.1007/s11740-009-0186-9.
- Murzin SP. Local laser annealing for aluminium alloy parts Laser Eng 2016; 33(1-3): 67-76.
- Zarini S, Mostaed E, Vedani M, Previtali B. Formability enhancement of Al 6060 sheets through fiber laser heat treatment. Int J Mater Form 2017; 10(5): 741-751. DOI: 10.1007/s12289-016-1316-5.
- Murzin SP, Kazanskiy NL. Softening of low-alloyed titanium billets with laser annealing. IOP Conf Ser Mater Sci Eng 2018; 302(1): 012070. DOI: 10.1088/1757-899X/302/1/012070.
- Niehuesbernd J, Bruder E, Müller C. Impact of the heating rate on the annealing behavior and resulting mechanical properties of UFG HSLA steel. Mater Sci Eng A 2018; 711: 325-333. DOI: 10.1016/j.msea.2017.11.018.
- Kazanskiy NL, Uspleniev GV, Volkov AV. Fabricating and testing diffractive optical elements focusing into a ring and into a twin-spot. Proc SPIE 2001; 4316: 193-199. DOI: 10.1117/12.407678.
- Kazanskiy NL, Soifer VA. Diffraction investigation of geometric-optical focusators into segment. Optik 1994; 96(4): 158-162.
- Doskolovich LL, Golub MA, Kazanskiy NL, Soifer VA, Usplenjev GV. Diffractive optical elements for laser processing. Proc SPIE 1993; 1983: 647-648.
- Golub MA, Kazanskii NL, Sisakyan NI, Soifer VA, Kharitonov SI. Diffraction calculation for an optical element which focuses into a ring. Optoelectron Instrum Data Process 1987; 6: 7-14.
- Kazanskiy NL, Murzin SP, Klochkov SYu. Formation of the required energy action at the laser treatment of materials with using radiation focusators [In Russian]. Computer Optics 2005; 28: 89-93.
- Murzin SP, Osetrov EL. Studies of temperature fields in structural steel by laser beam action formed by focusators [In Russian]. Computer Optics 2007; 31(3): 59-62.
- Murzin SP, Kazanskiy NL. Determination the allowable error to adjustment of a diffractive optical element and the accuracy demanded to set the parameters of the focused beam. Proc SPIE 2017; 10342: 103420S. DOI: 10.1117/12.2270705.
- Murzin SP, Kazanskiy NL. Laser beam shaping with purposefully changing of spatial power distribution. Proc SPIE 2018; 10774: 107740Q. DOI: 10.1117/12.2317480.
- Murzin SP. Formation of structures in materials by laser treatment to enhance the performance characteristics of aircraft engine parts. Computer Optics 2016; 40(3): 353-359. DOI: 10.18287/2412-6179-2016-40-3-353-359.
- Murzin SP, Kazanskiy NL, Liedl G, Otto A, Bielak R. Laser beam shaping for modification of materials with ferritic-martensitic structure. Procedia Eng 2017; 201: 164-168. DOI: 10.1016/j.proeng.2017.09.592.
- Murzin SP, Bielak R, Liedl G. Algorithm for calculation of the power density distribution of the laser beam to create a desired thermal effect on technological objects. Computer Optics 2016; 40(5): 679-684. – DOI: 10.18287/2412-6179-2016-40-5-679-684.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный
секретарь), +7 (846)
332-56-22 (технический редактор), факс: +7 (846) 332-56-20