(43-5) 09 * << * >> * Russian * English * Content * All Issues

Selective modification of dual phase steel DP 1000 by laser action using diffractive optical element

S.P. Murzin1,2, M.V. Blokhin1

Samara National Research University,
443086, Samara, Russia, Moskovskoye Shosse 34,  
TU Wien, Institute of Production Engineering and Photonic Technologies,
1060, Vienna, Austria, Getreidemarkt 9

 PDF, 2167 kB

DOI: 10.18287/2412-6179-2019-43-5-773-779

Pages: 773-779.

Full text of article: Russian language.

Abstract:
Experimental studies of shaping a CO2 laser beam with a reflective diffractive optical element have been performed. To increase the aperture of the initial beam, we used a collimator containing a system of two plane-convex spherical ZnSe lenses. For the focal line formed with the diffractive optical element in combination with the collimator, in addition to a 1.3-fold increase in the length, a decrease in the maximum beam power density was found to occur in the laser spot. It was demonstrated that under the laser action it is possible to generate in a two-phase steel sample regions of full hardening, selective hardening, and annealing, alongside the initial structure. The formation of such structures is due to the distribution pattern of temperature fields and a difference in the cooling rate across the volume of the heat affected zone.

Keywords:
laser action, beam shaping, diffractive optical element, collimator, dual-phase steel, selective modification, structure.

Citation:
Murzin SP, Blokhin MV. Selective modification of dual phase steel DP 1000 by laser action using diffractive optical element. Computer Optics 2019; 43(5): 773-779. DOI: 10.18287/2412-6179-2019-43-5-773-779.

Acknowledgements:
The study was supported by the Russian Foundation for Basic Research, (Project No. 18-58-14001). Austrian Science Fund (FWF): Project number I 3920.

References:

  1. Kannatey-Asibu E Jr. Principles of laser materials processing. Hoboken, New Jersey, US: John Wiley & Sons; 2009.
  2. Ion JC. Laser processing of engineering materials: principles, procedure and industrial application. Amsterdam, Oxford: Elsevier/Butterworth-Heinemann; 2005.
  3. Schaaf P. Laser processing of materials: fundamentals, applications and developments. Berlin, Heidelberg: Springer-Verlag; 2010.
  4. Ready JF, ed, Farson DF. LIA handbook of laser materials processing. Orlando, US: Laser Institute of America; 2001.
  5. Dahotre NB, Harimkar SP. Laser fabrication and machining of materials. New York, US: Springer Science + Business Media; 2008.
  6. Steen WM, Mazumder J. Laser material processing. 4th ed. London, UK: Springer; 2010.
  7. Bergmann HW. Short term annealing by laser treatment Proc SPIE 1987; 801: 296-301. DOI: 10.1117/12.941256.
  8. Minamida K, Kido M, Ishibashi A, Mogami S, Sasaki S. Surface annealing of steel wires for automo-tive tires by CO2 laser with cone shaped focusing mirror. International Congress on Applications of Lasers & Electro-Optics. 1990; 71: 460-468. DOI: 10.2351/1.5058389.
  9. Nolan SR. Method for laser annealing. U.S. Patent 7,063,755 of June 20, 2006.
  10. Neugebauer R, Scheffler S, Poprawe R, Weisheit A. Local laser heat treatment of ultra high strength steels to improve formability. Prod Eng 2009; 3(4-5): 347-351. DOI: 10.1007/s11740-009-0186-9.
  11. Murzin SP. Local laser annealing for aluminium alloy parts Laser Eng 2016; 33(1-3): 67-76.
  12. Zarini S, Mostaed E, Vedani M, Previtali B. Formability enhancement of Al 6060 sheets through fiber laser heat treatment. Int J Mater Form 2017; 10(5): 741-751. DOI: 10.1007/s12289-016-1316-5.
  13. Murzin SP, Kazanskiy NL. Softening of low-alloyed titanium billets with laser annealing. IOP Conf Ser Mater Sci Eng 2018; 302(1): 012070. DOI: 10.1088/1757-899X/302/1/012070.
  14. Niehuesbernd J, Bruder E, Müller C. Impact of the heating rate on the annealing behavior and resulting mechanical properties of UFG HSLA steel. Mater Sci Eng A 2018; 711: 325-333. DOI: 10.1016/j.msea.2017.11.018.
  15. Kazanskiy NL, Uspleniev GV, Volkov AV. Fabricating and testing diffractive optical elements focusing into a ring and into a twin-spot. Proc SPIE 2001; 4316: 193-199. DOI: 10.1117/12.407678.
  16. Kazanskiy NL, Soifer VA. Diffraction investigation of geometric-optical focusators into segment. Optik 1994; 96(4): 158-162.
  17. Doskolovich LL, Golub MA, Kazanskiy NL, Soifer VA, Usplenjev GV. Diffractive optical elements for laser processing. Proc SPIE 1993; 1983: 647-648.
  18. Golub MA, Kazanskii NL, Sisakyan NI, Soifer VA, Kharitonov SI. Diffraction calculation for an optical element which focuses into a ring. Optoelectron Instrum Data Process 1987; 6: 7-14.
  19. Kazanskiy NL, Murzin SP, Klochkov SYu. Formation of the required energy action at the laser treatment of materials with using radiation focusators [In Russian]. Computer Optics 2005; 28: 89-93.
  20. Murzin SP, Osetrov EL. Studies of temperature fields in structural steel by laser beam action formed by focusators [In Russian]. Computer Optics 2007; 31(3): 59-62.
  21. Murzin SP, Kazanskiy NL. Determination the allowable error to adjustment of a diffractive optical element and the accuracy demanded to set the parameters of the focused beam. Proc SPIE 2017; 10342: 103420S. DOI: 10.1117/12.2270705.
  22. Murzin SP, Kazanskiy NL. Laser beam shaping with purposefully changing of spatial power distribution. Proc SPIE 2018; 10774: 107740Q. DOI: 10.1117/12.2317480.
  23. Murzin SP. Formation of structures in materials by laser treatment to enhance the performance characteristics of aircraft engine parts. Computer Optics 2016; 40(3): 353-359. DOI: 10.18287/2412-6179-2016-40-3-353-359.
  24. Murzin SP, Kazanskiy NL, Liedl G, Otto A, Bielak R. Laser beam shaping for modification of materials with ferritic-martensitic structure. Procedia Eng 2017; 201: 164-168. DOI: 10.1016/j.proeng.2017.09.592.
  25. Murzin SP, Bielak R, Liedl G. Algorithm for calculation of the power density distribution of the laser beam to create a desired thermal effect on technological objects. Computer Optics 2016; 40(5): 679-684. – DOI: 10.18287/2412-6179-2016-40-5-679-684.

 


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20