(43-6) 06 * << * >> * Russian * English * Content * All Issues

The two reflector design problem for forming a flat wavefront from a point source as an optimal mass transfer problem

A.A. Mingazov1, L.L. Doskolovich1,2, D.A. Bykov1,2, N.L. Kazanskiy1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Russia, Samara, Molodogvardeyskaya 151,
Samara National Research University, 443086, Russia, Samara, Moskovskoye Shosse 34

 PDF, 776 kB

DOI: 10.18287/2412-6179-2019-43-6-968-975

Pages: 968-975.

Full text of article: Russian language.

Abstract:
The article deals with a problem of calculating two reflecting surfaces that form a given irradiance distribution with a flat wavefront, provided that a point source of light is used. A notion of a weak solution for the said problem is formulated and the equivalence of this problem and the Monge–Kantorovich mass transfer is proven.

Keywords:
geometric optics, optical design, nonimaging optics, inverse problem, Monge-Kantorovich mass transfer problem, optimal mass transportation.

Citation:
Mingazov AA, Doskolovich LL, Bykov DA, Kazanskiy NL. The two reflector design problem for forming a flat wavefront from a point source as an optimal mass transfer problem. Computer Optics 2019; 43(6): 968-975. DOI: 10.18287/2412-6179-2019-43-6-968-975.

Acknowledgements:
This work was supported by Russian Science Foundation (RSF) under grants 18-19-00326 (formulation of the problem of calculating of two reflector as an optimal mass transportation problem) and by Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS under agreement 007-ГЗ/Ч3363/26 (formulation of the weak solution of the problem).

References:

  1. Glimm T, Oliker VI. Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem. J Math Sci 2003; 117(3): 4096-4108. DOI: 10.1023/A:1024856201493.
  2. Wang X-J. On design of a reflector antenna II. Calc Variations Partial Differ Equ 2004; 20(3): 329-341. DOI: 10.1007/s00526-003-0239-4.
  3. Andreeva KV, Moiseev MA, Kravchenko SV, Doskolovich LL. Design of optical elements with TIR freeform surface [In Russian]. Computer Optics 2016; 40(4): 467-474. DOI: 10.18287/2412-6179-2016-40-4-467-474.
  4. Glimm T, Oliker VI. Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat’s principle. Indiana University Mathematics Journal 2004; 53(5): 1255-1277. DOI: 10.1512/iumj.2004.53.2455.
  5. Rubinstein J, Wolansky G. Intensity control with a freeform lens. J Opt Soc Am A 2007; 24(2): 463-469. DOI: 10.1364/JOSAA.24.000463.
  6. Doskolovich LL, Mingazov AA, Bykov DA, Andreev ES, Bezus EA. Variational approach to calculation of light field eikonal function for illuminating a prescribed region. Opt Express 2017; 25(22): 26378-26392. DOI: 10.1364/OE.25.026378.
  7. Doskolovich LL, Mingazov AA, Bykov DA, Andreev ES. Variational approach to eikonal function computation. Computer Optics 2018; 42(4): 557-567. DOI: 10.18287/2412-6179-2018-42-4-557-567.
  8. Doskolovich LL, Bykov DA, Andreev ES, Bezus EA, Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Opt Express 2018; 26(19): 24602-24613. DOI:10.1364/OE.26.024602.
  9. Doskolovich LL, Bykov DA, Mingazov AA, Bezus EA. Optimal mass transportation and linear assignment problems in the design of freeform refractive optical elements generating far-field irradiance distributions. Opt Express 2019; 27(9): 13083-13097. DOI: 10.1364/OE.27.013083.
  10. Bykov DA, Doskolovich LL, Mingazov AA, Andreev ES, Kazanskiy NL. Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions. Opt Express 2018; 26(21): 27812-27825. DOI: 10.1364/OE.26.027812.
  11. Graf T, Oliker V. An optimal mass transport approach to nearfield reflector problem in optical design. Inverse Problems 2012; 28(2): 025001. DOI: 10.1088/0266-5611/28/2/025001.
  12. Gutierrez CE, Huang Q. The near field refractor. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 2014; 31(4): 655-684. DOI: 10.1016/j.anihpc.2013.07.001.
  13. Schwartzburg Y, Testuz R, Tagliasacchi A, Pauly M. High-contrast computational caustic design. ACM Transactions on Graphics (TOG) 2014; 33(4). DOI: 10.1145/2601097.2601200.
  14. Yadav NK. Monge-Ampere problems with nonquadratic cost function: application to freeform optics. Eindhoven: Technische Universiteit Eindhoven; 2018. ISBN: 978-90-386-4574-2.
  15. Makarov B, Podkorytov A. Real analysis: Measures, integrals and applications: Measures, integrals and applications. London: Springer-Verlag; 2013.
  16. Villani C. Topics in optimal transportation. Providence, RI: American Mathematical Society; 2003.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20