(43-6) 14 * << * >> * Russian * English * Content * All Issues
Reconstruction of functions and digital images using sign representations
V.V. Myasnikov1,2
1 Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,
2 IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia
PDF, 1066 kB
DOI: 10.18287/2412-6179-2019-43-6-1041-1052
Pages: 1041-1052.
Full text of article: Russian language.
Abstract:
The paper deals with the reconstruction of implicitly defined functions or digital images. Functions are defined using observations, each of which is the result of a pairwise comparison of the function values for two random arguments. The analysis of the current state of research for particular statements of this problem is presented: the method of pairwise comparisons used in decision-making for a finite set of alternatives; reconstruction of preference/utility function in multicriteria tasks; sign representations of images used for the description and analysis of digital images. A unified approach to reconstructing functions and images according to their sign representations is proposed, based on mapping in a high-dimensional space and constructing a linear (when reconstructing a function and images) or non-linear (including non-parametric) classifier (when reconstructing preferences). For a number of classification algorithms, experimental studies have been conducted to evaluate the effectiveness of the proposed approach using the example of the reconstruction of the utility function in problems of decision theory and reconstruction of the brightness function of real images.
Keywords:
pairwise comparisons, sign representation, utility function, preference function, preferences elicitation, decision making, machine learning, digital image.
Citation:
Myasnikov VV. Reconstruction of functions and digital images using sign representations. Computer Optics 2019; 43(6): 1041-1052. DOI: 10.18287/2412-6179-2019-43-6-1041-1052.
Acknowledgements:
This work was partly funded by the Ministry of Science and Higher Education under a government project of FSRC "Crystallography and Photonics" RAS ("Introduction" and "State of the Art") and the Russian Foundation for Basic Research under grants ##18-01-00748, 18-29-03135-mk, and 17-29-03190-ofi (Sections 2-4: "Method of function or digital image reconstruction using sign representation" – "Conclusions and Results").
References:
- He DC, Wang L. Texture unit, texture spectrum, and texture analysis. IEEE Transactions on Geoscience and Remote Sensing 1990; 28: 509-512.
- Tsvetkov OV. Computation of biosignal entropy invariant to its amplitude variation using kernel rank [In Russian]. Izvestiya VUZ: Radioelektronika 1991; 34: 108-110.
- Tsvetkov OV. Estimation of the proximity of numerical sequences based on a comparison of their rank kernels [In Russian]. Izvestiya VUZ: Radioelektronika 1992; 8: 28-33.
- Ojala T, Pietikäinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. Proc 12th IAPR Int Conf Pattern Recogn (ICPR) 1994; 1: 582-585.
- Ojala T, Pietikinen M. A comparative study of texture measures with classification based on feature distributions. Patt Recogn 1996; 29: 51-59.
- Pietikäinen M, Hadid A, Zhao G, Ahonen T. Computer vision using local binary patterns. London: Springer-Verlag; 2011. ISBN: 978-0-85729-747-1.
- Brahnam S, Lakhmi C, Nanni L, Lumini A. Local binary patterns: New variants and applications studies. Berlin, Heidelberg: Springer-Verlag; 2014.
- Ojala T, Pietikinen M, Menp T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002; 24(7): 971-987.
- Goncharov AV. Investigation of the properties of images sign representation in the pattern recognition problems [In Russian]. Izvestiya SFedU. Engineering Sciences 2009; Special Issue: 178-188.
- Karkishenko AN. Stability investigation of the sign representation of images [In Russian]. Avtomatika i Telemehanika 2010; 9: 57-69.
- Bronevich AG, Karkishchenko AN, Lepskiy AN. Uncertainty analysis of extracting features and representations from images [In Russian]. Moscow: "Fizmatlit" Publisher; 2013.
- Boldin MV, Simonova GI, Tyurin YN. Sign-based methods in linear statistical models. Providence, Rhode Island: American Mathematical Society; 1997.
- Myasnikov VV. A local order transform of digital images. Computer Optics 2015; 39(3): 397-405. DOI: 10.18287/0134-2452-2015-39-3-397-405.
- Bradley RA, Terry ME. Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 1952; 39: 324-345. DOI: 10.2307/2334029.
- Fishburn PC. Utility theory for decision making. Wiley; 1970.
- Fürnkranz J, Hüllermeier E, eds. Preference learning. Berlin, Heidelberg: Springer-Verlag; 2011. ISBN: 978-3-642-14124-9.
- Murphy KP. Machine learning: A probabilistic perspective. MIT Press; 2012.
- Tsukida K, Gupta MR. How to analyze paired comparison data. UWEE Technical Report Number UWEETR-2011-0004. Seattle, Washington: 2011.
- Thurstone LL. A law of comparative judgment. Psychological Review 1927; 34(4): 273-286. DOI: 10.1037/h0070288.
- Saaty TL. Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. Rev R Acad Cien Serie A Mat 2008; 102: 251-318. DOI: 10.1007/BF03191825.
- Viappiani P. Preference modeling and preference elicitation: An overview. CEUR Workshop Proceedings 2014; 1278: 19-24.
- Guo S, Sanner S. Real-time multiattribute Bayesian preference elicitation with pairwise comparison queries. Journal of Machine Learning Research 2010; 9: 289-296.
- Arentze TA. Adaptive personalized travel information systems: A bayesian method to learn users’ personal preferences in multimodal transport networks. IEEE Transactions on Intelligent Transportation Systems 2013; 14: 1957-1966. DOI: 10.1109/TITS.2013.2270358.
- Campigotto P, Rudloff C, Leodolter M, Bauer D. Personalized and situation-aware multimodal route recommendations: The FAVOUR algorithm. IEEE Transactions on Intelligent Transportation Systems 2017; 18: 92-102. DOI: 10.1109/TITS.2016.2565643.
- Zhang S, Yao L, Sun A, Tay Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput Surv 2019; 52(1): 5. DOI: 10.1145/3285029.
- Melnikov V, Gupta P, Frick B, Kaimann D, Hüllermeier E. Pairwise versus pointwise ranking: A case study. Schedae Informaticae 2016; 25: 73-83. DOI: 10.4467/20838476SI.16.006.6187.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20