(44-1) 05 * << * >> * Russian * English * Content * All Issues
  
Orbital angular momentum  and topological charge of a Gaussian beam with multiple optical vortices
A.A. Kovalev 1,2, V.V. Kotlyar 1,2, D.S. Kalinkina 2
  1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia,
  2 Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia
  PDF, 813 kB
DOI: 10.18287/2412-6179-CO-632
Pages: 34-39.
Full text of article: Russian language.
 
Abstract:
Here we study  theoretically and numerically a Gaussian beam with multiple optical vortices  with unitary topological charge (TC) of the same sign, located uniformly on a  circle. Simple expressions are obtained for the Gaussian beam power, its  orbital angular momentum (OAM), and TC. We show that the OAM normalized to the  beam power cannot exceed the number of vortices in the beam. This OAM decreases  with increasing distance from the optical axis to the centers of the vortices.  The topological charge, on the contrary, is independent of this distance and  equals the number of vortices. The numerical simulation corroborates that after  passing through a random phase screen (diffuser) and propagating in free space,  the beams of interest can be identified by the number of local intensity minima  (shadow spots) and by the OAM.
Keywords:
Gaussian beam, optical vortex, phase singularity, orbital  angular momentum, topological charge, random screen, diffuser,  scattering medium.
Citation:
  Kovalev AA, Kotlyar VV,  Kalinkina DS. Orbital angular momentum and topological charge of a Gaussian  beam with multiple optical vortices. Computer Optics 2020; 44(1): 34-39. DOI: 10.18287/2412-6179-CO-632.
Acknowledgements:
This work was partly  funded by the Russian Foundation for Basic Research under projects 18-29-20003  ("Power, orbital angular momentum and topological charge of a Gaussian  beam with phase singularities locates on a circle") and 18-07-01129  ("Appendix A Derivation of the expression for the beam power" and  "Appendix B Derivation of the expression for the beam OAM") and by  the RF Ministry of Science and Higher Education within the state project of  FSRC "Crystallography and Photonics" RAS ("Numerical simulation  of propagation in a random medium").
References:
  - Krenn M, Fickler R, Fink  M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A. Communication with  spatially modulated light through turbulent air across Vienna. New J Phys 2014;  16: 113028. DOI: 10.1088/1367-2630/16/11/113028.
 
  - Durnin J. Exact  solutions for nondiffracting beams. I. The  scalar theory. J Opt Soc Am A 1987; 4: 651-654. DOI: 10.1364/JOSAA.4.000651.
 
  - Vasilyev VS, Kapustin  AI, Skidanov RV, Podlipnov VV, Ivliev NA, Ganchevskaya SV. Experimental  investigation of the stability of Bessel beams in the atmosphere. Computer  Optics 2019; 43(3): 376-384. DOI: 10.18287/2412-6179-2019-43-3-376-384.
     
  - Siegman AE. Lasers. Sausalito,   CA: University Science Books;  1986.
     
  - Wang F, Cai Y, Eyyuboglu HT, Baykal Y. Average intensity and spreading  of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent  atmosphere. Prog Electromagn Res 2010; 103: 33-55. DOI: 10.2528/PIER10021901.
     
  - Chen Y, Wang F, Zhao C, Cai Y. Experimental demonstration of a  Laguerre-Gaussian correlated Schell-model vortex beam. Opt Express 2014; 22(5):  5826-5838. DOI: 10.1364/OE.22.005826.
     
  - Lukin  VP, Konyaev PA, Sennikov VA. Beam spreading of vortex beams propagating in  turbulent atmosphere. Appl Opt 2012; 51(10): C84-C87. DOI:  10.1364/AO.51.000C84.
     
  - Gori F, Guattari G, Padovani C. Bessel-Gauss beams. Opt Commun 1987; 64:  491-495. DOI: 10.1016/0030-4018(87)90276-8.
     
  - Zhu K, Zhou G, Li X, Zheng X, Tang H. Propagation of Bessel-Gaussian  beams with optical vortices in turbulent atmosphere. Opt Express 2008; 16(26):  21315-21320. DOI: 10.1364/OE.16.021315.
     
  - Avramov-Zamurovic S, Nelson C, Guth S, Korotkova O, Malek-Madani R.  Experimental study of electromagnetic Bessel-Gaussian Schell Model beams  propagating in a turbulent channel. Opt Commun 2016; 359: 207-215. DOI:  10.1016/j.optcom.2015.09.078.
     
  - Lukin IP. Integral momenta of vortex Bessel-Gaussian beams in turbulent  atmosphere. Appl Opt 2016; 55(12): B61-B66. DOI: 10.1364/AO.55.000B61.
     
  - Wang  LG, Zheng WW. The effect of atmospheric turbulence on the propagation  properties of optical vortices formed by using coherent laser beam arrays. J  Opt A: Pure Appl Opt 2009; 11(6): 065703. DOI: 10.1088/1464-4258/11/6/065703.
     
  - Alperin SN, Niederriter RD, Gopinath JT, Siemens ME. Quantitative  measurement of the orbital angular momentum of light with a single, stationary  lens. Opt Lett 2016; 41(21): 5019-5022. DOI: 10.1364/OL.41.005019.
     
  - Kotlyar VV, Kovalev AA, Porfirev AP. Calculation of fractional orbital  angular momentum of superpositions of optical vortices by intensity moments.  Opt Express 2019; 27(8): 11236-11251. DOI: 10.1364/OE.27.011236.
     
  - Indebetouw  G. Optical vortices and their propagation. J Mod Opt 1993; 40(1): 73-87. DOI:  10.1080/09500349314550101.
     
  - Dennis M. Rows of optical vortices from elliptically perturbing a  high-order beam. Opt Lett 2006; 31(9): 1325-1327. DOI: 10.1364/OL.31.001325.
     
  - Alexeyev CN, Egorov YuA, Volyar AV. Mutual transformations of  fractional-order and integer-order optical vortices. Phys Rev A 2017; 96:  063807. DOI: 10.1103/PhysRevA.96.063807.
     
  - Berry MV. Optical vortices evolving from helicoidal integer and  fractional phase steps. J Opt A: Pure Appl Opt 2004; 6: 259-268. DOI:  10.1088/1464-4258/6/2/018.
     
  - Volyar A, Bretsko M, Akimova Y, Egorov Y. Vortex avalanche in the  perturbed singular beams. J Opt Soc Am A 2019; 36: 1064-1071. DOI:  10.1364/JOSAA.36.001064.
     
  - Kotlyar VV, Kovalev AA, Porfirev AP. Topological stability of optical  vortices diffracted by a random phase screen. Computer Optics 2019; 43(6): 917-925. DOI:  10.18287/2412-6179-2019-43-6-917-925. 
 
  - Abramowitz M, Stegun   IA. Handbook of mathematical  functions: With formulas, graphs, and mathematical tables. New York: Dover Publications Inc; 1979.
   
 
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20