(44-1) 07 * << * >> * Russian * English * Content * All Issues

A method of generating a random optical field using the Karhunen-Loeve expansion to simulate atmospheric turbulence

S.N. Khonina 1,2, S.G. Volotovskiy 1, M.S. Kirilenko 2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia,
Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia

 PDF, 987 kB

DOI: 10.18287/2412-6179-CO-680

Pages: 53-59.

Full text of article: Russian language.

Abstract:
It is proposed to use the random field generation in the numerical simulation of the propagation of radiation through a random medium using method based on the Karhunen–Loeve expansion with various types of correlation operators to describe turbulence simulators. The properties of the calculated simulators of a random medium with a Gaussian correlation function were investigated in modeling the propagation of Laguerre-Gaussian vortex beams. The simulation results showed that an increase in the order of the optical vortex leads, as in the experiment, to lower stability of the phase singularity of the beams to random optical fluctuations. The similarity of the simulation results and the optical experiments indicates the promise of the proposed approach for the synthesis of random environment simulators.

Keywords:
correlation operator, eigenfunctions, Karhunen-Loeve expansion, random optical medium simulator.

Citation:
Khonina SN, Volotovskiy SG, Kirilenko MS. A method of generating a random optical field using the Karhunen-Loeve expansion to simulate atmospheric turbulence. Computer Optics 2020; 44(1): 53-59. DOI: 10.18287/2412-6179-CO-680.

Acknowledgements:
This work was supported by the Russian Foundation for Basic Research under projects Nos. 18-37-00056-mol_a, 18-29-20045-mk (calculation of random field simulators based on the Karhunen-Loeve expansion) and the RF Ministry of Science and Higher Education within the government project of FSRC “Crystallography and Photonics” RAS under agreement 007-ГЗ/Ч3363/26 (simulation of Laguerre-Gaussian modes distortions).

References:

  1. Ramirez-Iniguez R, Idrus SM, Sun Z. Optical wireless communications: IR for wireless connectivity. Boca Raton: CRC Press; 2007.
  2. Majumdar AK, Ricklin JC. Free-space laser communications: principles and advances. New York: Springer Science & Business Media; 2008.
  3. Henniger H, Wilfer O. An introduction to free-space optical communications. Radioengineering 2010; 19(2): 203-212.
  4. Willner AE, Ren Y, Xie G, Yan Y, Li L, Zhao Z, Wang J, Tur M, Molish AF, Ashrafi S. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philos Trans A Math Phys Eng Sci 2017; 375(2087): 20150439.
  5. Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T. Ursin R. Zeilinger A. Communication with spatially modulated light through turbulent air across Vienna. New J Phys 2014; 16: 113028.
  6. Ren Y, Wang Z. Liao P, Li L, Xie G, Huang H, Zhao Z, Yan Y, Ahmed N, Willner A, Lavery MPJ, Ashrafi N, Ashrafi S, Bock R, Tur M, Djordjevic IB, Neifeld MA, Willner AE. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Opt Lett 2016; 41(3): 622-625.
  7. Isumaru A. Wave propagation and scattering in random media. New York: John Wiley & Sons; 1999.
  8. Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption, and emission of light by small particles. Cambridge: Cambridge University Press; 2002.
  9. Andrews LC. Laser beam propagation in random media. 2nd ed. Bellingham, WA: SPIE Optical Engineering Press; 2005.
  10. Eyyuboglu HT. Propagation of higher order Bessel-Gaussian beams in turbulence. Appl Phys B 2007; 88(2): 259-265. DOI: 10.1007/s00340-007-2707-6.
  11. Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A 2008; 25(1): 225-230. DOI: 10.1364/JOSAA.25.000225.
  12. Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8.
  13. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt Lasers Eng 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
  14. Polynkin P, Peleg A, Klein L, Rhoadarmer T, Moloney JV. Optimized multiemitter beams for free-space optical communications through turbulent atmosphere. Opt Lett 2007; 32(8): 885-887. DOI: 10.1364/OL.32.000885.
  15. Chen C, Yang H, Kavehrad M, Zhou Z. Propagation of radial Airy array beams through atmospheric turbulence.  Opt Lasers Eng 2014; 52: 106-114. DOI: 10.1016/j.optlaseng.2013.07.003.
  16. Gu Y, Korotkova O, Gbur G. Scintillation of nonuniformly polarized beams in atmospheric turbulence. Opt Lett 2009; 34(15): 2261-2263. DOI: 10.1364/OL.34.002261.
  17. Zhou P, Wang X, Ma Y, Ma H, Xu X, Liu Z. Propagation property of a nonuniformly polarized beam array in turbulent atmosphere. Appl Opt 2011; 50(9): 1234-1239. DOI: 10.1364/AO.50.001234.
  18. Moreno I, Davis JA, Badham K, Sánchez-López MM, Holland JE, and Cottrell DM. Vector beam polarization state spectrum analyzer. Sci Rep 2017; 7: 2216.
  19. Khonina SN, Porfirev AP, Karpeev SV. Recognition of polarization and phase states of light based on the interaction of nonuniformly polarized laser beams with singular phase structures. Opt Express 2019; 27(13): 18484-18492. DOI: 10.1364/OE.27.018484.
  20. Gbur G, Korotkova O. Angular spectrum representation for the propagation of arbitrary coherent and partially coherent beams through atmospheric turbulence. J Opt Soc Am A 2007; 24(3): 745-752. DOI: 10.1364/JOSAA.24.000745.
  21. Chen R, Dong Y, Wang F, Cai Y. Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere. Appl Phys B 2013; 112: 247-259.
  22. Thomas S. A simple turbulence simulator for adaptive optics. Proc SPIE 2004; 5490: 766-773. DOI: 10.1117/12.549858.
  23. Mishra SK, Dixit A, Porwal V, Mohan D. Design and testing of customized phase plate as atmospheric turbulence simulator. 37th National Symposium of OSI at Pondicherry University 2013: 172-174. DOI: 10.13140/2.1.4106.5920.
  24. Fukunaga K, Koontz WLG. Representation of random processes using the finite Karhunen-Loeve expansion. Information and Control 1970; 16: 85-101. DOI: 10.1016/S0019-9958(70)80043-2.
  25. Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans Patt Anal Machine Intell 1990; 12(1): 103-108.
  26. Wang L. Karhunen-Loeve expansions and their application. Ann Arbor: ProQuest; 2008.
  27. Soifer VA, Golub MA, Khonina SN. Decorrelated features of images extracted with the aid of optical Karhunen-Loeve expansion. Pattern Recognition and Image Analysis 1993; 3(3): 289-295.
  28. Fancourt CL, Principe C. On the relationship between the Karhunen-Loeve transform and the prolate spheroidal wave functions. 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing 2000; 1: 261-264.
  29. Kirilenko MS, Khonina SN. Coding of an optical signal by a superposition of spheroidal functions for undistorted transmission of information in the lens system. Proc SPIE 2014; 9146: 91560J. DOI: 10.1117/12.2054214.
  30. Khonina SN, Volotovskii SG, Soifer VA. A method for computing the eigenvalues of prolate spheroidal functions of order zero, Doklady Mathematics 2001; 63(1): 136-138.
  31. Fasshauer GE. Positive definite kernels: past, present and future. Source: <http://www.math.iit.edu/~fass/PDKernels.pdf>.
  32. Golub MA, Khonina SN. Karhunen-Loeve expansion for exponential-cosine correlation function. Computer Optics 1993; 13: 49-53.
  33. Feizulin ZI, Kravtsov YA. Broadening of a laser beam in a turbulent medium, Radiophysics and Quantum Electronics 1967; 10(1): 33-35.
  34. Young CY, Gilchrest YV, Macon BR. Turbulence-induced beam spreading of higher-order mode optical waves. Opt Eng 2002; 41: 1097-1103.
  35. Korotkova O. Random light beams: theory and applications. Boca Raton, FL: CRC Press; 2013. ISBN: 978-1-4398-1950-0.
  36. Lutomirski RF, Yura HT. Propagation of a finite optical beam in an inhomogeneous medium. Appl Opt 1971; 10(7): 1652-1658.
  37. Kravtsov YuA, Feizulin ZI, Vinogradov AG. Propagation of radio waves through the Earth's atmosphere [In Russian]. Moscow: “Radio i svyaz” Publisher; 1983.
  38. Rytov SM. Introduction in statistical radiophysics. Part I [In Russian]. Moscow: “Nauka” Publisher; 1976.
  39. Obukhov AM. Turbulence and atmospheric dynamics [In Russian]. Leningrad: “Gidrometizdat” Publisher; 1988.
  40. Gurvich AS, Kon AI, Mironov VL, Khmelevtsov SS. Laser radiation in a turbulent atmosphere [In Russian]. Moscow: “Nauka” Publisher; 1976
  41. Van Trees HL. Detection, estimation and modulation theory: Part I. Detection; estimation and linear modulation theory. – New York: John Wiley & Sons Inc; 1968.
  42. Le Maitre OP, Knio OM. Spectral methods for uncertainty quantification with applications to computational fluid dynamics: scientific computation. – Luxembourg: Springer; 2010.
  43. Huang SP, Quek ST, Phoon KK. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes. Int J Num Method Eng 2001; 52: 1029-1043. DOI: 10.1002/nme.255.
  44. Prohorov SA. Mathematical description and modeling of random processes [In Russian]. Samara: Samara State Aerospace University Publisher; 2001.
  45. Iroshnikov NG, Larichev AV, Koryabin AV, Shmalhausen VI. Express analysis of turbulent parameters [In Russian]. Moscow: University Physics Bulletin 2009; 5: 74-78.
  46. Kirilenko MS, Khonina SN. Formation of signals matched with vortex eigenfunctions of bounded double lens system. Opt Commun 2018; 410: 153-159. DOI: 10.1016/j.optcom.2017.09.060.
  47. Adams MJ. An introduction to optical waveguides, Chichester: John Wiley & Sons Inc, 1981.
  48. Khonina SN, Kotlyar VV, Soifer VA, Honkanen M, Lautanen J, Turunen J. Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics. J Mod Opt 1999; 46(2): 227-238. DOI: 10.1080/09500349908231267.
  49. Kharitonov SI, Volotovsky SG, Khonina SN. Calculation of the angular momentum of an electromagnetic field inside a waveguide with absolutely conducting walls: ab initio. Computer Optics 2018; 42(4): 588-605. DOI: 10.18287/2412-6179-2018-42-4-588-605.
  50. Ustinov AV, Niziev VG, Khonina SN, Karpeev SV. Local characteristics of paraxial Laguerre–Gaussian vortex beams with a zero total angular momentum. J Mod Opt 2019; 66(20): 1961-1972. DOI: 10.1080/09500340.2019.1686183.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20