(44-1) 13 * << * >> * Russian * English * Content * All Issues

Adaptive interpolation based on optimization of the decision rule in a multidimensional feature space

M.V. Gashnikov 1,2

Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF, 779 kB

DOI: 10.18287/2412-6179-CO-661

Pages: 101-108.

Full text of article: Russian language.

Abstract:
An adaptive multidimensional signal interpolator is proposed, which selects an interpolating function at each signal point by means of the decision rule optimized in a multidimensional feature space using a decision tree. The search for the dividing boundary when splitting the decision tree vertices is carried out by a recurrence procedure that allows, in addition to the search for the boundary, selecting the best pair of interpolating functions from a predetermined set of functions of an arbitrary form. Results of computational experiments in nature multidimensional signals are presented, confirming the effectiveness of the adaptive interpolator.

Keywords:
multidimensional signal, adaptive interpolation, multidimensional feature, optimization, interpolation error.

Citation:
Gashnikov MV. Adaptive interpolation based on optimization of the decision rule in a multidimensional feature space. Computer Optics 2020; 44(1): 101-108. DOI: 10.18287/2412-6179-CO-661.

Acknowledgements:
The work was funded by the Russian Foundation for Basic Research under RFBR grant 18-01-00667 and the RF Ministry of Science and Higher Education within the state project of FSRC “Crystallography and Photonics” RAS under agreement 007-GZ/Ch3363/26.

References:

  1. Woods J. Multidimensional signal, image, and video processing and coding. 2nd ed. Academic Press; 2011.
  2. Vaganov SE, Khashin SI. Comparison of doubling the size of Image algorithms [In Russian]. Model Anal Inform Sist 2016; 23(4): 382-400. DOI: 10.18255/1818-1015-2016-4-389-400.
  3. Varathaguru M. Sabeenian RS. New edge-directed interpolation based-lifting DWT and MSPIHT algorithm for image compression. Circuits and Systems 2016; 7: 2242-2252.
  4. Trullemans S, Van Holsbeeke L, Signer B. The context modelling toolkit: A unified multi-layered context modelling approach. Proc ACM Hum-Comput Interact 2017; 1(1): 8.
  5. Zhou D, Shen X, Dong W. Image zooming using directional cubic convolution interpolation. IET Image Processing 2012; 6(6): 627-634.
  6. Vaganov SE. Adaptive ANN-based method of constructing an interpolation formula for doubling the image size. Computer Optics 2019, 43(4): 627-631. DOI: 10.18287/2412-6179-2019-43-4-627-631.
  7. Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 2016: 38(2): 295-307. DOI: 10.1109/TPAMI.2015.2439281.
  8. Bigot J, Boyer C, Weiss P. An analysis of block sampling strategies in compressed sensing. IEEE Transactions on Information Theory 2016; 62(4): 2125-2139.
  9. Chkifa A, Cohen A, Schwab C. High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found Comput Math 2014; 14(4): 601-633.
  10. Gashnikov MV, Maksimov AI. Parameterized four direction contour-invariant extrapolator for DPCM image compression. Proc SPIE 2018; 10806: 108064E. DOI: 10.1117/12.2503003.
  11. Gashnikov MV. Optimization of the multidimensional signal interpolator in a lower dimensional space. Computer Optics 2019; 43(4): 653-660. DOI: 10.18287/2412-6179-2019-43-4-653-660.
  12. Gonzalez RC, Woods RE. Digital image processing. 3th ed. Upper Saddle River, NJ: Prentice Hall; 2007. ISBN: 978-0-13-168728-8.
  13. Sayood K. Introduction to data compression. 4th ed. Waltham, MA: Morgan Kaufmann; 2012. ISBN: 978-0-12-415796-5.
  14. Sergeyev VV, Gashnikov MV, Glumov NI. Compression method for real-time systems of remote sensing. ICPR 2000; 3: 228-231. DOI: 10.1109/ICPR.2000.903527.
  15. Gashnikov MV. Optimization of the hierarchical interpolator for image compression. Proc SPIE 2018; 10696: 106961C. DOI: 10.1117/12.2309527.
  16. Soifer VA, ed. Computer image processing, Part II: Methods and algorithms. VDM Verlag Dr Müller; 2010. ISBN: 978-3-6391-7545-5.
  17. Shalev-Shwartz S, Ben-David S. Understanding machine learning: From theory to algorithms. Cambridge: Cambridge University Press; 2014. ISBN: 978-1-107-05713-5.
  18. Tekalp AM. Digital video processing. 2nd ed. Prentice Hall; 2015. ISBN: 978-0-13-399100-0.
  19. Chang Ch-I. Hyperspectral data processing: Algorithm design and analysis. Hoboken, NJ: A John Wiley & Sons Inc; 2013. ISBN: 978-0-471-69056-6.
  20. Lillesand T, Kiefer RW, Chipman J. Remote sensing and image interpretation. 7th ed. John Wiley & Sons; 2015.
  21. Wu S, Lew MS. Image correspondences matching using multiple features fusion. In Book: Hua G, Jégou H, eds. Computer Vision – ECCV 2016 Workshops 2016; III: 737-746. DOI: 10.1007/978-3-319-49409-8_61.
  22. TokyoTech 31-band hyperspectral image dataset. Source: <http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata31.html>.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20