(44-2) 03 * << * >> * Russian * English * Content * All Issues
  
Dynamics of entanglement of atoms with two-photon transitions 
induced by a thermal field
E.K. Bashkirov 1
  1 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
    
  PDF, 1192 kB
DOI: 10.18287/2412-6179-CO-595
Pages: 167-176.
Full text of article: Russian language.
 
Abstract:
In this paper, we investigate the entanglement between two two-level atoms  non-resonantly in-teracting with a thermal  field of a lossless one-mode resonator via degenerate two-photon transi-tions. On the basis of the exact solution of the time-dependent density matrix we calculate the  negativity as a measure of atomic entanglement. We show that for separable initial atomic states a slight atom-field detuning  may generate the  high  amount of atom-atom entanglement. The re-sults also show that for non-resonant  atom-field interaction the entanglement induced by nonlin-ear two-photon interaction is smaller than that induced by  one-photon interaction in contrast to the resonant interaction situation. For a Bell-type entangled initial atomic state we obtain that if  the detuning  increases,  there is an appreciable decrease in the amplitudes of the negativity oscilla-tions. The results also show that elimination of the sudden death of entanglement for non-resonant two-photon atom-field interaction may take place.
Keywords:
two-level atoms, two-photon interaction, thermal field, entanglement, sudden death of entanglement.
Citation:
  Bashkirov EK. Dynamics of entanglement of atoms with two-photon transitions induced by a thermal field. Computer Optics 2020; 44(2): 167-176. DOI: 10.18287/2412-6179-CO-595.
References:
  - Buluta  I, Ashhab S, Nori F. Natural and artificial atoms for quantum computation. Rep  Prog Phys 2011; 74: 104401.
 
  - Xiang  Z-L, Ashhab S, You JQ, Nori F. Hybrid quantum circuits: Superconducting  circuits interacting with other quantum systems. Rev Mod Phys 2013; 85: 623-653.
 
  - Georgescu IM,  Ashhab S, Nori F.  Quantum simulation.  Rev Mod Phys 2014; 88: 153-185.
     
  - Gu X, Kockum AF,  Miranowicz A, Liu Y-X, Nori F. Microwave photonics with superconducting quantum  circuits. Phys Rep 2017; 718-719: 1-102.
     
  - Wendin G.  Quantum information processing with superconducting circuits: a review. Rep  Prog Phys 2017; 80: 106001.
     
  - Shore BW, Knight PL. The  Jaynes-Cummings model. J Mod Opt 1993; 40(7): 1195-1238.
     
  - Larson J.  Dynamics of the Jaynes-Cummings and Rabi models: Old wine in new bottles.  Physica Scripta 2007; 76: 146-160.
     
  - Garraway BM. The  Dicke model in quantum optics: Dicke model revisited. Phil Trans R Soc A 2011;  369(1939): 1137-1155.
     
  - Leibfried D, Blatt R, Monroe C,  Wineland D Quantum dynamics of single trapped ions. Rev Mod Phys 2003; 75:  281-324. 
     
  - Walther H, Varcoe BTH, Englert B-G,  Becker T. Cavity quantum electrodynamics. Rep Prog Phys 2006; 69: 325-1382. 
     
  - Haroche S., Brune M., Raimond JM. From  cavity to circuit quantum electrodynamics. Nature Phys 2020; 16: 243–246. 
     
  - Schuster I, Kubanek A, Fuhrmanek A, Puppe T, Pinkse PWH, Murr K, Rempe G. Nonlinear spectroscopy of photons bound to one atom. Nature Phys 2008; 4: 382-385. 
     
  - Mlynek JA, Abdumalikov Jr AA, Fink  JM, Steffen L,  Baur M, Lang C, van Loo  AF, Wallraff A. Demonstrating  W-type entanglement of Dicke states in resonant cavity quantum electrodynamics.  Phys  Rev A 2010; 86:  053838. 
     
  - Altomare F, Park JI, Cicak K, Sillanpää MA, M. Allman, MS,  Li D, Sirois A, Strong JA, Whittaker JD, Simmonds RW Tripartite interactions between two phase qubits and a resonant cavity. Nature  Phys 2010; 6: 777-781. 
     
  - Sun G, Zhou Z, Mao B, Wen X, Wu P,  Han S. Entanglement dynamics of a superonducting phase qubit coupled to a  two-level system. Phys Rev B 2012; 86: 064502. 
     
  - Niemczyk T, Deppe F, Hueb H, Menzel  EP, Hocke F, Schwarz MJ, Garcia-Ripoll JJ, Zueco D, Hummer T, Solano E, Marx A,  Gross R. Beyond the Jaynes-Cummings model: circuit QED in the ultrastrong  coupling regime. Nature Phys 2010; 6: 772-776. 
     
  - Turcu ICE, Shen B, Neely D, Sarri G, Tanaka KA, McKenna P, Mangles SPD, Yu T-P, Luo W, Zhu X-L, Yin Y. Select Quantum  electrodynamics experiments with colliding petawatt laser pulses Quantum  electrodynamics experiments with colliding petawatt laser pulses. High Power  Laser Sci Eng 2019; 7: 1-8. 
     
  - Dell'Anno F, De Siena S, Illuminati F.  Multiphoton quantum optics and quantum state engineering. Phys Rep 2006; 428:  53-168.
     
  - Villas-Boas  CJ, Rossatto DZ. Multiphoton Jaynes-Cummings model: Arbitrary rotations in  fock space and quantum filters. Phys Rev Lett 2019;  122: 123604. 
     
  - Vogel W, de Matos Filho RL Nonlinear  Jaynes-Cummings dynamics of a trapped ion. Phys Rev A 1995; 52(5): 4214-4217. 
     
  - Kubanek A, Ourjoumtsev A, Schuster  I, Koch M, Pinkse PWH, Murr K, Rempe G. Two-photon gateway in one-atom cavity  quantum electrodynamics. Phys Rev Lett 2008; 101: 203602. 
     
  - Kim H, Sridharan D, Shen TC, Solomon  GS, Waks E. Strong coupling between two quantum dots and a photonic crystal  cavity using magnetic field tuning. Opt Express 2011; 19: 2589-2599. 
     
  - Poletto S, Gambetta JM, Merkel ST,  Smolin JA, Chow JM, Corcoles AD, Keefe GA, Rothwell MB, Rozen JR, Abraham DW,  Rigetti C, Steffen M. Entanglement  of two superconducting qubits in a waveguide cavity via monochromatic  two-photon excitation. Phys Rev Lett 2012; 109(24): 240505. 
     
  - Deppe F, Mariantoni M, Menzel EP,  Marx A, Saito S, Kakuyanag K, Tanaka H, Meno T, Semba K, Takayanagi H, Solano  E, Grossi R. Two-photon probe of the Jaynes–Cummings model and controlled  symmetry breaking in circuit QED. Nature Phys 2008; 4: 686-691. 
     
  - Campagne-Ibarcq P, Zalys-Geller E,  Narla A, Shankar S, Reinhold P, Burkhart L, Axline C, Pfaff W, Frunzio L,  Schoelkopf RJ, Devoret MH. Deterministic remote entanglement of superconducting  circuits through microwave two-photon transitions. Phys Rev Lett 2018; 120:  200501. 
     
  - Di Stefano O,  Settineri A, Macrì V, Garziano L, Stassi R, Savasta S, Nori F. Resolution of  gauge ambiguities in ultrastrong coupling cavity quantum electrodynamics. Nature  Phys 2019; 15: 803-808. DOI: 10.1038/s41567-019-0534-4.
     
  - Felicetti S, Rossatto DZ, Rico E,  Solano E, Forn-Diaz P. Two-photon quantum Rabi model with superconducting  circuits. Phys Rev A 2018; 97: 013851. 
     
  - Shevchenko SN, Omelyanchouk AN,  Il'ichev E. Multiphoton transitions in Josephson-junction qubits. Low Temp Phys  2012; 38(4): 360-381. 
     
  - Kockum AF, Miranowicz A, De Lierato S, Savasta S, Nori F. Ultrastrong coupling between light  and matter. Nat Rev Phys 2019; 1: 19-40. 
     
  - Plenio MB, Huelga SF,  Beige A, Knight PL.  Cavity-loss-induced generation of entangled atoms. Phys Rev A 1999; 59: 2468-2475. 
     
  - Bose S,  Fuentes-Guridi I, Knight PL, Vedral V. Subsystem purity as an  enforcer of entanglement. Phys Rev Lett 2001;  87: 050401.
     
  - Kim MS, Lee J,  Ahn D, Knight PL. Entanglement induced by a single-mode heat environment. Phys  Rev A 2002; 65: 040101
     
  - Zhou L, Song  H-S. Entanglement  induced by a single-mode thermal field and criteria for entanglement. J Opt B  2002; 4: 425-429.
     
  - Bashkirov EK.  Entanglement induced by the two-mode thermal noise. Laser Phys Lett 2006; 3:  145-150.
     
  - Zhang B.  Entanglement between two qubits interacting with a slightly detuned thermal  field. Opt Commun 2010; 283: 4676-4679. 
     
  - Aguiar LS,  Munhoz PP, Vidiella-Barranco A, Roversi JA. The entanglement of two  dipole-dipole coupled in a cavity interacting with a thermal field. J Opt B  2005; 7: S769-S771.
     
  - Hu Y-H, Fang  M-F, Wu Q. Atomic coherence control on the entanglement of two atoms in  two-photon processes. Chinese Phys 2007; 16: 2407-2414.
     
  - Hu Y-H, Fang  M-F, Jiang C-L, Zeng K. Coherence-enhanced entanglement between two atoms at  high temperature. Chinese Phys B 2008; 17: 1784-1790.
     
  - Liao X-P, Fang M-F, Cai J-W, Zheng  X-J. The entanglement of two dipole-dipole   coupled atoms interacting with a thermal field via two-photon process.  Chinese Phys B 2008; 17: 2137-2142. 
     
  - Bashkirov EK, Mastyugin MS.  Entanglement between two qubits induced by thermal field. J Phys: Conf Ser  2016; 735(1): 012025. 
     
  - Bashkirov EK, Mastyugin MS. The  influence of atomic coherence and dipole-dipole interaction on entanglement of  two qubits with nondegenerate two-photon transitions. Pramana 2006; 84(1):  127-135. 
     
  - Bashkirov EK,  Stupatskaya MP. Entanglement of two atoms interacting with a thermal  electromagnetic field. Computer Optics 2011; 35(2): 249-243.
     
  - Bashkirov EK,  Mastyugin MS. The influence of the dipole-dipole interaction and atomic  coherence on the entanglement of two atoms with degenerate two-photon  transitions. Optisc and Spectroscopy 2014; 116(4): 630-634.
     
  - Bashkirov EK, Mastyugin MS. Entanglement of two superconducting  qubits interacting with two-mode thermal field. Computer Optics 2013; 37(3): 278-285.
     
  - Bashkirov EK,  Litvinova DV. Entanglement between qubits due to the atomic coherence. Computer  Optics 2014; 38(4):  663-669.
     
  - Bashkirov EK  Thermal entanglement between a Jaynes-Cummings atom and an isolated atom. Int J  Theor Phys 2018; 57: 3761-3771. 
     
  - Cardoso WB,  Avelar  AT,  Baseia B,   de Almeida NG Entanglement sudden death via two-photon processes in  cavity QED. J Phys B: At Mol Opt Phys 2009; 42(19): 195507.
     
  - Rephaeli E,  Fan S. Few-photon single-atom cavity QED with  input-output formalism in Fock space. IEEE J Sel Top Quantum Electron 2012; 18:  1754-1762.
     
  - Bashkirov EK,  Mastyugin MS. The dynamics of entanglement in two-atom Tavis-Cummings model  with non-degenerate two-photon transitions for four-qubits initial atom-field  entangled states. Opt Commun 2014; 313: 170-174. 
     
  - Yang G, Gu W-J,  Li G, Zou B, Zhu Y. Quantum nonlinear cavity quantum electrodynamics with  coherently prepared atoms. Phys Rev A 2015; 92: 033822.
     
  - Puebla R, Hwang MJ,  Casanova J, Plenio MB. Probing the dynamics of a superradiant quantum phase  transition with a single trapped ion. Phys Rev A 2017; 95: 063844.
     
  - Singh S, Gilhare  K. Evolution of atomic entanglement for different cavity-field statistics in  single-mode two-photon process. J Exp Theor Phys 2018; 127(3): 391-397.
     
  - Al Naim AF, Khan  JY, Khalil EM, Abdel-Khalek S. Effect of Kerr medium and Stark Shift parameter  om Wehrl entropy and the field purity for two-photon Jaynes-Cumming model under  dispersive approximation. J Russ Laser Res 2019; 40(1): 20-29.
     
  - Fink JM, Baur M,  Bianchetti К, Filipp S, Göppl M, Leek PJ, Steffen L, Blais A, Wallraff A.  Thermal excitation of multi-photon dressed states in circuit quantum electrodynamics.  Physica Scripta 2009; T137: 014013.
     
  - Zheng S.-B.  Robust and high-speed entanglement engineering in cavity QED and ion trap with  a single slightly detuned interaction. J Phys B: At Mol Opt Phys 2006; 39:  2505-2513.
     
  - Bashkirov EK. Dynamics of the  collective spontaneous emission of two three-level atoms in a cavity. Optics and Spectroscopy 2006; 100(4): 613-616. 
 
  - Pavelev AV, Semin VV.  Investigation of non-markovian dynamics of two dipole-dipole interacting qubits  based on numerical solution of the non-linear stochastic Schrödinger equation.  Computer Optics 2019; 43(2): 168-173. DOI: 10.18287/2412-6179-2019-43-2-168-173.
   
 
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20