(44-3) 03 * << * >> * Russian * English * Content * All Issues

Waveguided modes in a planar structure «graphene – thin semiconductor film – graphene»

A.S. Abramov  1, D.A. Evseev 1, D.I. Sementsov  1

Ulyanovsk State University, Ulyanovsk, Russia

 PDF, 1049 kB

DOI: 10.18287/2412-6179-CO-648

Pages: 325-332.

Full text of article: Russian language.

Abstract:
We investigated optical-range waveguide modes propagating in a semiconductor film sandwiched between two graphene plates. The mode characteristics were shown to depend on the chemical potential of graphene and the film thickness. Based on the numerical analysis, we obtained dispersion relations for the first waveguide modes, frequency dependences of their group and phase velocities, and the distribution of the energy flux density in the structure. We discovered the presence of spectral bands characterized by small phase and negative group velocities of the waveguide modes. The possibility of tuning the waveguide mode by changing the chemical potential of graphene and the thickness of the semiconductor film was established.

Keywords:
dispersion, graphene, semiconductor waveguide structure, slow waves, negative group velocity.

Citation:
Abramov AS, Evseev DA, Sementsov DI. Waveguided modes in a planar structure «graphene – thin semiconductor film – graphene». Computer Optics 2020; 44(3): 325-332. DOI: 10.18287/2412-6179-CO-648.

Acknowledgements:
The work was partially funded by the Ministry of Science and Education of the Russian Federation (state assignment No. 3.6825.2017/BCh) and the Russian Foundation of Basic Research (agreement No. 18-42-730001, 18-42-730005).

References:

  1. Falkovsky LA, Pershoguba SS. Optical far-infrared properties of a graphene monolayer and multilayer. Phys Rev B 2007; 76: 153410.
  2. Hanson GW. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene.  J Appl Phys 2008; 103: 064302.
  3. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys 2009; 81: 109-162.
  4. Aleshkin VYa, Dubinov AA, Ryzhii VI. Terahertz laser based on optically pumped graphene: model and feasibility of realization. JETP Lett 2009; 89(2): 70-74.
  5. Katsnelson MI. Optical properties of graphene: The Fermi-liquid approach. Euro Physics Letters 2008; 84(3): 37001.
  6. Berman OL, Kezerashvili RYa. Graphene-based one-dimensional photonic crystal. J Phys Cond Matter 2012; 24(1): 015305.
  7. Madani A, Entezar RS. Optical properties of one-dimensional photonic crystals containing graphene sheets. Phys B Cond Matter 2013; 431: 1-5.
  8. Liang H, Ruan S, Zhang M, Su H, Li IL. Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces. Appl Phys Lett 2015; 109(9): 091602.
  9. Berman OL, Gumbs G, Lozovik YuE. Magnetoplasmons in layered graphene structures. Phys Rev B 2008; 78(8): 085401.
  10. Ferreira A, Viana-Gomes J, Bludov YuV, Pereira VM, Peres NMR, Castro Neto AH. Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids. Phys Rev B 2011; 84: 235410.
  11. Babichev АV, Gasumyants VE, Butko VY. Resistivity and thermopower of graphene made by chemical vapor deposition technique. J Appl Phys 2013; 113(7): 076101.
  12. Gan CH, Chu HS, Li EP. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys Rev B 2012; 85: 125431.
  13. Lozovik YuE. Plasmonics and magnetoplasmonics based on graphene and a topological insulator. Phys Usp 2012; 55: 1035-1039.
  14. Zhu B, Ren G, Zheng S, Lin Z, Jian S. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt Express 2013; 21: 17089.
  15. Zhu B, Ren G, Zheng S, Lin Z, Jian S. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt Express 2013; 21(14): 17089.
  16. Svintsov D, Vyurkov V, Ryzhii V, Otsuji T. Voltage-controlled surface plasmon-polaritons in double graphene layer. J Appl Phys 2013; 113(5): 053701.
  17. Buslaev PI, Iorsh IV, Shadrivov IV, Belov PA, Kivshar YuS. Plasmons in waveguide structures formed by two graphene layers. JETP Lett 2013; 97: 535-539.
  18. Smirnova D, Buslaev P, Iorsh I, Shadrivov IV, Belov PA, Kivshar YuS. Deeply subwavelength electromagnetic Tamm states in graphene metamaterials. Phys Rev B 2014; 89(24): 2-5.
  19. Evseev DA, Sementsov DI. Waveguide modes in a planar graphene-dielectric thin layer structure. Optics and Spectroscopy 2018; 124: 230-236.
  20. Evseev DA, Sementsov DI. Surface plasmon polaritons at the boundary of a grapheme-based thin-layer medium. Physics of Solid State 2018; 60(3): 609-613.
  21. Falkovsky LA. Magnetooptics of graphene layers. Phys Usp 2012; 182: 1140-1145.
  22. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 2004; 306(10): 666-669.
  23. Gan CH, Chu HS, Li EP. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys Rev B 2012; 85: 125431.
  24. Agranovich VM, Mills DL, eds. Surface polaritons – electromagnetic waves at surfaces and interfaces. Elsevier Science Ltd; 1982.
  25. Landau LD, Lifshitz EM. Electrodynamics of continuous media. 2nd ed. New York: Pergamon Press Ltd; 1984.
  26. Panyaev,  IS, Sannikov DG. Spectral properties of nonlinear surface polaritons of Mid-IR range in a «semiconductor-layered metamaterial» structure. Computer Optics 2017; 41(2): 183-191. DOI: 10.18287/2412-6179-2017-41-2-183-191.
  27. Kadomina EA, Bezus EA, Doskolovich LL. Bragg gratings with parasitic scattering suppression for surface plasmon polaritons. Computer Optics 2018; 42(5): 800-806. DOI: 10.18287/2412-6179-2018-42-5-800-806.
  28. Khoubafarin Doust S, Siahpoush V, Asgari A. The tunability of surface plasmon polaritons in graphene waveguide structures. Plasmonics 2017; 12: 1633-1639.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20