(44-3) 03 * << * >> * Russian * English * Content * All Issues
  
Waveguided modes in a planar structure 
«graphene – thin semiconductor film – graphene»
A.S.  Abramov  1, D.A. Evseev 1, D.I. Sementsov  1
  1 Ulyanovsk State University, Ulyanovsk, Russia
    
 PDF, 1049 kB
  PDF, 1049 kB
DOI: 10.18287/2412-6179-CO-648
Pages: 325-332.
Full text of article: Russian language.
 
Abstract:
We investigated  optical-range waveguide modes propagating in a semiconductor film sandwiched  between two graphene plates. The mode characteristics were shown to depend on  the chemical potential of graphene and the film thickness. Based on the  numerical analysis, we obtained dispersion relations for the first waveguide  modes, frequency dependences of their group and phase velocities, and the  distribution of the energy flux density in the structure. We discovered the  presence of spectral bands characterized by small phase and negative group  velocities of the waveguide modes. The possibility of tuning the waveguide mode  by changing the chemical potential of graphene and the thickness of the  semiconductor film was established.
Keywords:
dispersion, graphene, semiconductor waveguide structure, slow waves, negative group velocity.
Citation:
  Abramov AS, Evseev DA, Sementsov DI. Waveguided modes in a planar structure «graphene – thin semiconductor film – graphene». Computer Optics 2020; 44(3): 325-332. DOI: 10.18287/2412-6179-CO-648.
Acknowledgements:
The work was partially funded by the Ministry of Science and Education of the Russian Federation (state assignment No. 3.6825.2017/BCh) and the Russian Foundation of Basic Research (agreement No. 18-42-730001, 18-42-730005).
References:
  - Falkovsky LA, Pershoguba  SS. Optical far-infrared properties of a graphene monolayer and multilayer.  Phys Rev B 2007; 76: 153410.
- Hanson GW. Dyadic  Green’s functions and guided surface waves for a surface conductivity model of  graphene.  J Appl Phys 2008; 103: 064302.
- Castro  Neto AH, Guinea F, Peres NMR,  Novoselov KS, Geim AK.  The electronic properties of graphene. Rev Mod Phys 2009; 81: 109-162.
 
- Aleshkin  VYa, Dubinov AA, Ryzhii VI. Terahertz laser based on optically pumped graphene:  model and feasibility of realization. JETP Lett 2009; 89(2): 70-74.
 
- Katsnelson  MI. Optical properties of graphene: The Fermi-liquid approach. Euro Physics  Letters 2008; 84(3): 37001.
 
- Berman OL, Kezerashvili RYa. Graphene-based  one-dimensional photonic crystal. J Phys Cond Matter 2012; 24(1): 015305. 
 
- Madani  A, Entezar RS. Optical properties of one-dimensional photonic crystals  containing graphene sheets. Phys B Cond Matter 2013; 431: 1-5.
 
- Liang H, Ruan S, Zhang M, Su H, Li IL. Graphene surface  plasmon polaritons with opposite in-plane electron oscillations along its two  surfaces. Appl Phys Lett 2015; 109(9): 091602. 
 
- Berman  OL, Gumbs G, Lozovik YuE. Magnetoplasmons in layered graphene structures. Phys  Rev B 2008; 78(8): 085401.
 
- Ferreira  A, Viana-Gomes J, Bludov YuV, Pereira  VM, Peres NMR, Castro Neto AH. Faraday effect in graphene enclosed in an  optical cavity and the equation of motion method for the study of  magneto-optical transport in solids. Phys Rev B 2011; 84: 235410.
 
- Babichev  АV, Gasumyants VE,  Butko VY. Resistivity and thermopower of graphene made by chemical vapor deposition  technique. J Appl Phys 2013; 113(7): 076101.
 
- Gan  CH, Chu HS, Li EP. Synthesis of highly  confined surface plasmon modes with doped graphene sheets in the midinfrared  and terahertz frequencies. Phys Rev B 2012; 85: 125431.
 
- Lozovik  YuE. Plasmonics and magnetoplasmonics based on graphene and a topological  insulator. Phys Usp 2012; 55: 1035-1039.
 
- Zhu  B, Ren G, Zheng S, Lin Z, Jian S. Nanoscale dielectric-graphene-dielectric  tunable infrared waveguide with ultrahigh refractive indices. Opt Express 2013;  21: 17089. 
 
- Zhu  B, Ren G, Zheng S, Lin Z, Jian S. Nanoscale dielectric-graphene-dielectric  tunable infrared waveguide with ultrahigh refractive indices. Opt Express 2013;  21(14): 17089.
 
- Svintsov  D, Vyurkov V, Ryzhii V, Otsuji T. Voltage-controlled surface plasmon-polaritons  in double graphene layer. J Appl Phys 2013; 113(5): 053701.
 
- Buslaev  PI, Iorsh IV, Shadrivov IV, Belov PA, Kivshar YuS. Plasmons in waveguide  structures formed by two graphene layers. JETP Lett 2013; 97: 535-539.
 
- Smirnova  D, Buslaev P, Iorsh I, Shadrivov IV, Belov PA, Kivshar YuS. Deeply  subwavelength electromagnetic Tamm states in graphene metamaterials. Phys Rev B  2014; 89(24): 2-5.
 
- Evseev  DA, Sementsov DI. Waveguide modes in a planar graphene-dielectric thin layer  structure. Optics and Spectroscopy 2018; 124: 230-236. 
 
- Evseev DA, Sementsov DI. Surface plasmon polaritons at the boundary of a  grapheme-based thin-layer medium. Physics of Solid State 2018; 60(3): 609-613.
 
- Falkovsky LA. Magnetooptics of graphene layers.  Phys Usp 2012; 182: 1140-1145.
 
- Novoselov  KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov  AA. Electric field effect in atomically thin carbon films. Science 2004;  306(10): 666-669.
 
- Gan  CH, Chu HS, Li EP. Synthesis of highly  confined surface plasmon modes with doped graphene sheets in the midinfrared  and terahertz frequencies. Phys Rev B 2012; 85: 125431.
 
- Agranovich  VM, Mills DL, eds. Surface polaritons – electromagnetic waves at surfaces and  interfaces. Elsevier Science Ltd; 1982.
 
- Landau LD, Lifshitz EM. Electrodynamics of continuous  media. 2nd ed. New York:  Pergamon Press Ltd; 1984. 
 
- Panyaev,  IS, Sannikov DG. Spectral properties of nonlinear  surface polaritons of Mid-IR range in a «semiconductor-layered metamaterial»  structure. Computer Optics 2017; 41(2): 183-191. DOI:  10.18287/2412-6179-2017-41-2-183-191.
 
- Kadomina EA, Bezus EA, Doskolovich  LL. Bragg gratings with parasitic scattering suppression for surface plasmon  polaritons. Computer Optics 2018; 42(5): 800-806.  DOI: 10.18287/2412-6179-2018-42-5-800-806. 
- Khoubafarin Doust S, Siahpoush V, Asgari A. The tunability of surface plasmon  polaritons in graphene waveguide structures. Plasmonics 2017; 12: 1633-1639.
   
  
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20