(44-3) 04 * << * >> * Russian * English * Content * All Issues

Transfer of spin angular momentum to a dielectric particle

V.V. Kotlyar  1,2, A.G. Nalimov  1,2, A.A. Kovalev 1,2, A.P. Porfirev 1,2, S.S. Stafeev  1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,

443001, Samara, Russia, Molodogvardeyskaya 151,

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 2402 kB

DOI: 10.18287/2412-6179-CO-686

Pages: 333-342.

Full text of article: Russian language.

Abstract:
We show here that in the sharp focus of a linearly polarized laser beam the spin vector flux has only transverse components (the effect of photonic wheels or photonic helicopter). For a linearly polarized optical vortex, the orbit-spin conversion leads to the appearance of both longitudinal and transverse components of the spin density vector in the focus. Spin-orbit conversion is experimentally demonstrated for a circularly polarized Gaussian beam when a transverse energy flux (orbital angular momentum) arises in the focus, which is transmitted to a microparticle and makes it rotate. Switching the handedness of circular polarization (from left to right) switches the microparticle rotation direction. It is also shown here that an azimuthally polarized vortex beam with an arbitrary integer topological charge generates in the focus a spin density vector that only has an axial component (pure magnetization), while the transverse spin flux is absent.

Keywords:
spin angular momentum, circular polarization, orbit-spin conversion, spin-orbit conversion, vortex beam.

Citation:
Kotlyar VV, Nalimov AG, Kovalev AA, Porfirev AP, Stafeev SS. Transfer of spin angular momentum to a dielectric particle. Computer Optics 2020; 44(3): 333-342. DOI: 10.18287/2412-6179-CO-686.

Acknowledgements:
This work was supported by the Russian Foundation for Basic Research under project No. 18-29-20003 (“Orbital-spin conversion in focus and Mobius strip”), the Russian Science Foundation under project No. 18-19-00595 (all other theoretical sections and the experiment), and the Ministry of Science and Higher Education within the government project of the FSRC “Crystallography and Photonics” RAS under contract N 007-GZ/Ch3363/26 (“Introduction” and “Conclusion”).

References:

  1. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  2. Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
  3. Kotlyar VV, Kovalev AA, Porfirev AP. Radial dependence of the angular momentum density of a paraxial optical vortex. Phys Rev A 2018; 97(5): 053833. DOI: 10.1103/PhysRevA.97.053833.
  4. Kotlyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36(10): 2850-2855. DOI: 10.1364/JOSAB.36.002850.
  5. Rodriguez-Herrera OG, Lara D, Bliokh KY, Ostrovskaya EA, Dainty C. Optical nanoprobing via spin-orbit interaction of light. Phys Rev Lett 2010; 104(25): 253601.
  6. Roy B, Ghosh N, Gupta SD, Panigrahi PK, Roy S, Banerjee A. Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap. Phys Rev A 2013; 87: 043823.
  7. Roy B, Ghosh N, Banerjee A, Gupta SD, Roy S. Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap. New J Phys 2014; 16(8): 083037.
  8. Meng P, Man Z,Konijnenberg AP, Urbach HP. Angular momentum properties of hybrid cylindrical vector vortex beams in tightly focused optical systems. Opt Express 2019; 27(24): 35336-35348.
  9. Irvine WTM, Bouwmeester D. Linked and knotted beams of light. Nat Phys 2008; 4(9): 716-720.
  10. Sugic D, Dennis MR. Singular knot bundle in light. J Opt Soc Am A 2018; 35(12): 1987-1999.
  11. Larocque H, Sugic D, Mortimer D, Taylor AJ, Fickler R, Boyd RW, Dennis MR, Karimi E. Reconstructing the topology of optical polarization knots. Nat Phys 2018; 14(11): 1079-1082.
  12. Aiello A, Banzer P, Neugebauer M, Leuchs G. From transverse angular momentum tophotonic wheels. Nat Photon 2015; 9: 789-795. DOI: 10.1038/NPHOTON.2015.20.
  13. Bauer T, Neugebauer M, Leuchs G, Banzer P. Optical polarization Mobius strips and points of purely transverse spin density. Phys Rev Lett 2016; 117: 013601. DOI: 10.1103/PhysRevLett.117.013601.
  14. Bauer T, Banser P, Karimi E, Orlov S, Rubano A, Marrucci L, Santamato E, Boyd RW, Leuchs G. Observation of optical polarization Mobius strips. Science 2015; 347(6225): 964-966.
  15. Jiang Y, Li X, Gu M. Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam. Opt Lett 2013; 38: 2957-2960. DOI: 10.1364/OL.38.002957.
  16. Zhang S, Fu S, Zhang H, Ge X, Bai Z, Lyu Y, Zhao R, Man Z. Fully controlled photonic spin in higly confined optical field. Opt Express 2019; 27(23): 33621-33633.
  17. Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc R Soc Lond A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  18. Bliokh KY, Bekshaev AY, Nori F. Extraordinary momentum and spin in evanescent waves. Nat Commun 2014; 5: 3300. DOI: 10.1038/ncomms4300.
  19. Youngworth KS, Brown TG.Focusing of high numerical aperture cylindrical-vector beams. Opt Express 2000; 7: 77-87.
  20. Berry MV. Optical currents. J Opt A: Pure Appl Opt 2009; 11: 094001.
  21. Kotlyar VV, Stafeev SS, Kovalev AA. Sharp focusing of a light field with polarization and phase singularities of an arbitrary order. Computer Optics 2019; 43(3): 337-346. DOI: 10.18287/2412-6179-2019-43-3-337-346.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20