(44-4) 05 * << * >> * Russian * English * Content * All Issues
  
Necessary conditions for the propagation of two modes, LP01 and LP11, in a step-index optical fiber with a Kerr nonlinearity
  V.A. Burdin 1, A.V. Bourdine 1, O.Yu. Gubareva 1
  1 Povolzhskiy State University of Telecommunication and Informatics,
 
  443090, Samara, Russia, Moskovskoye Shosse 77
 PDF, 979 kB
  PDF, 979 kB
DOI: 10.18287/2412-6179-CO-699
Pages: 533-539.
Full text of article: English language.
 
Abstract:
This  paper presents the results of an analysis of the necessary propagation  conditions in a step-index optical fiber with a Kerr nonlinearity of two modes, LP01 and LP11, during the transmission  of high-power optical pulses. All results were obtained by solving a system of  two nonlinear equations for these modes, obtained by the Gauss approximation  method, and the subsequent use of a procedure for refining estimates using the  mixed finite elements method. The necessary conditions are determined,  estimates of the boundaries for the range of normalised frequencies for which  they are fulfilled are obtained, and an approximate formula is proposed for  estimating the upper limit of this range.
Keywords:
optical  fiber, refractive index profile, step-index optical fiber, equivalent mode spot  radius, Kerr nonlinearity, propagation constant, Gauss approximation, system of  nonlinear equations.
Citation:
  Burdin VA, Bourdine AV,  Gubareva OYu. Necessary conditions for the propagation of two modes, LP01 and LP11, in a step-index optical fiber with a Kerr  nonlinearity. Computer Optics 2020; 44(4): 533-539. DOI: 10.18287/2412-6179-CO-699.
Acknowledgements:
  This  work was supported by RFBR, DST, NSFC and NRF (Project No. 19-57-80006 BRICS_t).
References:
- Okamoto K, Marcatili EAJ. Chromatic dispersion  characteristics of fibers with optical kerr-effect non-linearity. J Lightw  Technol 1989; 1(12): 1988-1994.
 
- Debord B, Alharbi M, Vincetti L, Husako, A,  Fourcade-Dutin C, Hoenninger C, Mottay E, Gérôme F, Benabid F. Multi-meter  fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and  fiber-aided laser-micromachining. Opt Express 2014; 22(9): 10735-10746.
 
- Pouysegur  J, Guichard F, Weichelt B, Delaigue M, Zaouter Y, Hönninger C, Mottay E,  Georges P, Druon F. Single-stage Yb:YAG booster amplifier producing 2.3 mJ, 520  fs pulses at 10 kHz. Proc Adv Solid State Lasers 2015; hal-01359547.
 
- Debord  B, Gerome F, Paul P-M, Husakou A, Benabid F. 2.6 mJ energy and 81 GW peak power  femto-second laser pulse delivery and spectral broadening in inhibited coupling  Kagome fiber. CLEO: 2015, OSA Technical Digest (online) (Optical Society of  America, 2015): STh4L.7.
 
- Kryukov  PG. Femtosecond pulses. The introduction of a new area of laser physics [In  Russian]. Moscow: “Fizmatlit” Publisher; 2008.
 
- Stingl  A. Femtosecond future. Nat Photon 2010; 4: 158.
 
- Sibbett  W, Lagatsky A.A, Brown CTA. The development and application of femtosecond  laser systems. Opt Express 2010; 20(7): 6989-7001.
 
- Burdin  VA, Bourdine AV. Dispersion characteristics of step index single mode optical  fiber with Kerr nonlinearity. Proc SPIE 2017; 10342: 103420N.
 
- Burdin  VA, Bourdine AV, Andreev VA, Yablochkin K.A. Spectral characteristics of step  index single mode optical fiber with Kerr nonlinearity. Proc SPIE 2018; 10774:  107740L.
 
- Snyder  AW. Understanding monomode optical fibers. Proc IEEE 1981; 69(1): 6-13.
 
- Love  JD, Hussey CD. Variational approximations for higher-order modes of  weakly-guiding fibers. Opt Quantum Electron 1984; 16(1): 41-48.
 
- Snyder  АW, Love JD. Optical waveguide theory. London, New York: Chapman & Hall;  1983.
 
- Burdin  VA, Bourdine AV. Solution for arbitrary order guided mode propagating over  optical circle fi-ber based on Gaussian approximation. Physics of wave  processes and radio engineering systems 2011; 14(2): 65-72.
 
- Burdin VA, Bourdine AV, Volkov KA. Spectral  characteristics of LP11 mode of step index optical fiber with Kerr  nonlinearity. Proc SPIE 2018; 10774: 107740N.
 
- Bourdine  AV, Burdin VA, Sultanov AH, Delmuchametov OR. Algorithm for optical fiber  chromatic dispersion calculation based on full-vector mixed finite element  method [In Russian]. Infokommunikacionnye Tehnologii 2009; 7(2): 13-20.
 
- Agrawal  G. Nonlinear fiber optics. London, San Diego: Academic Press; 2007.
 
- Petermann  K. Fundamental mode microbending loss in graded-index and W fibers. Opt Quantum  Electron 1977; 9: 167-175.
 
- Burdin  VA, Bourdine AV. A System of nonlinear characteristic equations for two-mode  propagation in step-index optical fiber. Proc OWTNM Workshop 2018: 31.
 
- Kelley  C. Numerical methods for nonlinear equations. ActaNumerica 2018; 27: 207-287.
 
- Corning  SMF-28 Optical Fiber. Product Information. Corning PI1036 2002: 4.
 
- Garcia  H, Johnson AM, Oguama FA, Trivedi S. New approach to the measurement of the nonlinear  refractive index of short (< 25 m) lengths of silica and erbium-doped  fibers. Opt Lett 2003; 28(19): 1796-1978.
 
- Traore  A, Lalanne E, Johnson AM. Determination of the nonlinear refractive index of  multimode silica fiber with a dual-line ultra-short pulse laser source by using  the induced grating autocorrelation technique. Opt Express 2015; 23(13):  17127-17137. 
- Burdin V. Algorithm for estimation of material dispersion of fused  silica glass optical fibers. Proc SPIE 2015; 9533: 95330J.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20