(44-4) 08 * << * >> * Russian * English * Content * All Issues
  
Bragg waveguide of rectangular cross-section
  N.V. Selina 1
 1 Kuban Station Technology University, Russia, Krasnodar
 
 
 PDF, 828 kB
  PDF, 828 kB
DOI: 10.18287/2412-6179-CO-672
Pages: 552-560.
Full text of article: Russian language.
 
Abstract:
A method for calculating  parameters of rectangular waveguides using separation of variables is  presented. The method makes it possible to calculate multilayer Bragg  waveguides with an arbitrary number of layers and an arbitrary composition as  photonic crystal structures with defect. A result of the numerical calculation  of the dispersion diagram of such a structure is given. This result is in good  agreement with the earlier published data on the study of similar structures.
Keywords:
channel waveguide, Bragg  multilayer structure, Maxwell’s equations.
Citation:
  Selina NV. Bragg  waveguide of rectangular cross-section. Computer Optics 2020; 44(4): 552-560. DOI: 10.18287/2412-6179-CO-672.
References:
- Boudrioua  А. Photonic waveguides: Theory and applications. John Wiley and Sons; 2010.  ISBN: 978-0-470-61114-2.
 
- Calvo  ML, Lakshminarayanan V. Optical waveguides: from theory to applied mechanics.  Taylor & Francis Group; 2007. ISBN: 978-1-57444-698-2.
 
- Snyder AW, Love  JD. Optical waveguide theory. London,   New York: Chapman and Hall; 1983.
 
- Adams MJ. An  introduction to optical waveguides. Chichester, New York, Brisbane, Toronto: John Willey and  Sons; 1981.
 
- Uranus HP,  Rahman BMA. Low-loss ARROW waveguide  with rectangular hollow core and rectangular low-density polyethylene/air  reflectors for terahertz waves. J Nonlinear Opt Phys Mater 2018; 27(3): 1850029. DOI:  10.1142/S0218863518500297. 
 
- Perevoznik D, Morgner U.  Femtosecond writing of waveguides and waveguide network components. 2019 Conference  on Lasers and Electro-Optics Europe & European Quantum Electronics  Conference (CLEO/Europe-EQEC) 2019. DOI:  10.1109/CLEOE-EQEC.2019.8871550. 
 
- Wang J, Hashiguchi M. Numerical evaluation on cutoff  frequency of twisted waveguide with rectangular cross-section. Proceedings of  the 2019 COMSOL Conference 2019. 
 
- Mamontov АV, Nefedov VN, Khritkin  S. Application of below-cutoff waveguides for pyrometric measurements, Meas  Tech 2018; 61(7): 723-726.
- Duehring MB, Sigmund O,  Feurer T. Design of photonic bandgap fibers by topology optimization. J Opt Soc  Am B 2010; 27(1): 51-58.
 
- Olivier S,  Benisty H, Weisbuch C, Smith CJM, Krauss TF, Houdré R. Coupled-mode theory and  propagation losses in photonic crystal waveguides. Opt Express 2003; 11(13):  1490-1496.
 
- Hill KO, Meltz  G. Fiber Bragg grating technology fundamentals and overview. J Lightw Technol  1997; 15: 1263-1276.
 
- Isapour  A, Kouki AB. Vertical LTCC integrated rectangular waveguide and transitions for  millimeter-wave applications. IEEE Trans Microw Theory Tech 2019; 67: 868-882.
 
- Gatti  RV, Rossi R, Dionigi M. Broadband right-angle rectangular waveguide to  substrate integrated waveguide transition with distributed impedance matching  network. Appl Sci 2019; 9(3): 389. DOI: 10.3390/app9030389.
 
- Svetkin MI,  Erokhin AI. Modeling of periodic rectangular ladder-type waveguide systems.  Progress In Electromagnetics Research Symposium (PIERS) 2017: 2115-2119.
 
- Marcatili EAJ.  Dielectric rectangular waveguides and directional coupler for integrated optics.  Bell Syst Tech J 1969; 48(7): 2071-2102.
 
- Yariv A, Yeh P.  Optical waves in crystals. New York,  Chichester, Brisbane, Toronto, Singapore:  John Wiley and Sons; 1984.    
- Odarenko EN, Shmatko AA. Slow waves in a layered dielectric waveguide  with a Bragg sheath [In Russian]. Radiotehnika 2015;  183: 73-76.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20