(44-4) 09 * << * >> * Russian * English * Content * All Issues

Rotation of an elliptical dielectric particle in the focus of a circularly polarized Gaussian beam
A.G. Nalimov 1,2, S.S. Stafeev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardeyskaya 151, 443001, Samara, Russia,
Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia

 PDF, 2208 kB

DOI: 10.18287/2412-6179-CO-693

Pages: 561-567.

Full text of article: Russian language.

Abstract:
A force and a torque exerted on an elliptical dielectric particle in the focus of a spherical circularly polarized laser beam are considered. The numerical simulation is conducted using a diffraction field obtained by an FDTD method, with the force and torque derived using a Maxwell’s stress tensor. It is shown that an optical torque is exerted on the center of an elliptical particle put in the focus of a circularly polarized spherical wave, making it rotate around the optical axis. The rotation occurs when the elliptical microparticle is situated in a transverse plane to the optical axis. When shifting the ellipsoid from the optical axis, an optical trapping force appears that prevents its displacement, meaning that the particle finds itself in an optical trap on the optical axis.

Keywords:
light force, optical torque, optical tweezers, Maxwell’s stress tensor, rotation.

Citation:
Nalimov AG, Stafeev SS. Rotation of an elliptical dielectric particle in the focus of a circularly polarized Gaussian beam. Computer Optics 2020; 44(4): 561-567. DOI: 10.18287/2412-6179-CO-693.

Acknowledgements:
The work was partly funded by the Russian Science Foundation (section “Theoretical background”), # 18-19-00595 (section “A torque in a non-vortex beam”), the Russian Foundation for Basic Research grant # 18-29-20003 (section “A force and torque in vortex beam”) and the RF Ministry of Science and Higher Education within a state contract with the FSRC “Crystallography and Photonics” RAS under agreement 007-ГЗ/Ч3363/26 (sections “Introduction” and “Conclusion”).

References:

  1. Sraj I, Szatmary AC, Marr DWM, Eggleton CD. Dynamic ray tracing for modeling optical cell manipulation. Opt Express 2010; 18: 16702-16714.
  2. Zhong M, Xue G, Zhou J, Wang Z, Li Y. Measurement of interaction force between RGD-peptide and Hela cell surface by optical tweezers. Chin Opt Lett 2012; 10(10): 101701.
  3. Zhou JH, Zhong MC, Wang ZQ, Li YM. Calculation of optical forces on an ellipsoid using vectorial ray tracing method. Opt Express 2012; 20: 14928-14937.
  4. Liu S, Li Z, Weng Z, Li Y, Shui L, Jiao Z, Chen Y, Luo A, Xing X, He S. Miniaturized optical fiber tweezers for cell separation by optical force. Opt Lett 2019; 44: 1868-1871.
  5. Drobczyński S, Duś-szachniewicz K. Real-time force measurement in double wavelength optical tweezers. J Opt Soc Am B 2017; 34: 38-43.
  6. Yu Y, Zhang Z, Li Z, Wang X. Methods of calibration to optical trapping force upon non-spherical cells. Chin Opt Lett 2006; 4: 722-724.
  7. Muradoglu M, Chiu WSY, Ng TW. Optical force lateral push–pulling using focus positioning. J Opt Soc Am B 2012; 29: 874-880.
  8. Wang D, Wang Z. Optical pulling force in periodic backward-wave waveguides. Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America) 2017: FTh1H.4.
  9. Jing P, Liu Y, Keeler EG, Cruz NM, Freedman BS, Lin LY. Optical tweezers system for live stem cell organization at the single-cell level. Biomed Opt Express 2018; 9: 771-779.
  10. Mitri FG. Radiation force and torque on an elliptical cylinder illuminated by a TE-polarized non-paraxial focused Gaussian light sheet with arbitrary incidence. J Opt Soc Am A 2020; 37: 265-275.
  11. Spyratou E, Makropoulou M, Serafetinides AA. Red blood cell micromanipulation with elliptical laser beam profile optical tweezers in different osmolarity conditions. Proc SPIE 2011; 8092: 80920T.
  12. Funk M, Parkin SJ, Stilgoe AB, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Constant power optical tweezers with controllable torque. Opt Lett 2009; 34: 139-141.
  13. Zhang Y, Xue Y, Zhu Z, Rui G, Cui Y, Gu B. Theoretical investigation on asymmetrical spinning and orbiting motions of particles in a tightly focused power-exponent azimuthal-variant vector field. Opt Express 2018; 26: 4318-4329. DOI: 10.1364/OE.26.004318.
  14. Landau LD, Lifshitz EM. The classic theory of fields [In Russian]. Moscow: "Nauka" Publisher; 1973. ISBN: 5-02-014420-7.
  15. Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 1996; 124: 529-541.
  16. Bekshaev AY. Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows. J Opt 2013; 15: 044004.
  17. Kotlyar VV, Nalimov AG. Analytical expression for radiation forces on a dielectric cylinder illuminated by a cylindrical Gaussian beam. Opt Express 2006; 14(13): 6316-6321. DOI: 10.1364/OE.14.006316.
  18. Chang S, Lee SS. Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam. J Opt Soc Am B 1985; 2: 1853-1860.
  19. Bezryadina A, Lamstein J, Preece D, Chen JC, Chen Z. Tug-of-war optical tweezers to control cell clusters. Optics in the Life Sciences Congress, OSA Technical Digest (online) (Optical Society of America) 2017: OtM4E.5.
  20. Rykov MA, Skidanov RV. Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap. Appl Opt 2014; 53(2): 156-164. DOI: 10.1364/AO.53.000156.
  21. Wei MT, Yang KT, Karmenyan A, Chiou A. Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap. Opt Express 2006; 14: 3056-3064.
  22. Fontes A, Fernandes HP, Thomaz AA, Barbosa LC, Barjas-Castro ML, Cesar CL. Studying red blood cell agglutination by measuring electrical and mechanical properties with a double optical tweezers. Proc SPIE 2007; 6633: 6633_26.
  23. Zhao R, Tassin P, Koschny T, Soukoulis CM. Optical forces in nanowire pairs and metamaterials. Opt Express 2010; 18: 25665-25676.
  24. Pedaci F, Huang Z, Oene M, Dekker NH. Calibration of the optical torque wrench. Opt Express 2012; 20: 3787-3802.
  25. Li M, Yan S, Yao B, Lei M, Yang Y, Min J, Dan D. Intrinsic optical torque of cylindrical vector beams on Rayleigh absorptive spherical particles. J Opt Soc Am A 2014; 31: 1710-1715.
  26. Li M, Yan S, Yao B, Liang Y, Han G, Zhang P. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. J Opt Soc Am A 2016; 33: 1341-1347. DOI: 10.1364/JOSAA.33.001341.
  27. Liu J, Zhang C, Zong Y, Guo H, Li ZY. Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle. Photon Res 2015; 3: 265-274.
  28. Biener G, Vrotsos E, Sugaya K, Dogariu A. Optical torques guiding cell motility. Opt Express 2009; 17: 9724-9732.
  29. Nieto-Vesperinas M. Optical torque on small bi-isotropic particles. Opt Lett 2015; 40: 3021-3024.
  30. Rockstuhl C, Herzig HP. Calculation of the torque on dielectric elliptical cylinders. J Opt Soc Am A 2005; 22(1): 109-116. DOI: 10.1364/josaa.22.000109.
  31. Nalimov AG, Kotlyar VV. Calculation of the moment of the force acting by a cylindrical Gaussian beam on a cylindrical microparticle. Computer Optics 2007; 31(2): 16-20.
  32. Kotlyar VV, Nalimov AG. Calculating the pressure force of the non-paraxial cylindrical Gaussian beam exerted upon a homogeneous circular-shaped cylinder. J Mod Opt 2006; 53(13): 1829-1844. DOI: 10.1080/09500340600653188.
  33. Kotlyar VV, Nalimov AG, Kovalev AA, Porfirev AP, Stafeev SS. Transfering of spin angular momentum to a dielectric particle. Computer Optics 2020; 44(3): 333-342. DOI: 10.18287/2412-6179-CO-686.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20