(44-5) 03 * << * >> * Russian * English * Content * All Issues
Inversion of the longitudinal component of spin angular momentum in the focus of a left-handed circularly polarized beam
A.G. Nalimov 1,2, E.S. Kozlova 1,2
1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
2 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
PDF, 1048 kB
DOI: 10.18287/2412-6179-CO-761
Pages: 699-706.
Full text of article: Russian language.
Abstract:
It has been shown theoretically and numerically that in the sharp focus of a circularly polarized optical vortex, the longitudinal component of the spin angular momentum vector is inverted. Moreover, if the input light to the optical system is left-hand circularly polarized, it has been shown to be right-hand polarized in the focus near the optical axis. Since this effect occurs near the focus where a backward energy flow takes place, such an inversion of the spin angular momentum can be used to detect the backward energy flow.
Keywords:
spin angular momentum, right-hand circular polarization, optical vortex, backward energy flow, optical torque.
Citation:
Nalimov AG, Kozlova ES. Inversion of the longitudinal component of spin angular momentum in the focus of a left-handed circularly polarized beam. Computer Optics 2020; 44(5): 699-706. DOI: 10.18287/2412-6179-CO-761.
Acknowledgements:
The work was partly funded by the Russian Foundation for Basic Research under grant #18-29-20003 (Section "Spin angular momentum in the focus of a circularly polarized optical vortex with topological charge 2"), the Russian Science Foundation under grant #18-19-00595 ("Spin angular momentum in the focus of a circularly polarized Gaussian beam" and "Simulation") and by the RF Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS ("Introduction" and "Conclusion").
References:
- Schwartz C, Dogariu A. Conversation of angular momentum of light in single scattering. Opt Express 2006; 14: 8425-8433.
- Nieminen TA, Stilgoe AB, Heckenberg NR, Rubinsztein-Dunlop N. Angular momentum of a strongly focused Gaussian beam. J Opt A 2008; 10: 115005.
- Haefner D, Sukhov S, Dogariu A. Spin Hall effect of light in spherical geometry. Phys Rev Lett 2009; 102: 123903.
- Rodriguez-Herrera OS, Lara D, Bliokh KY, Ostrovskaya EA, Dainty C. Optical nanoprobing via spin-orbit interaction of light. Phys Rev Lett 2010; 104: 253601.
- Bekshaev A, Bliokh KY, Soskin M. Internal flows and energy circulation in light beams. J Opt 2011; 13: 053001.
- Koltyar VV, Nalimov AG, Stafeev SS. Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus. J Opt Soc Am B 2019; 36(10): 2850-2855. DOI: 10.1364/JOSAB.36.002850.
- Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc Math Phys Eng Sci 1959; 253: 358-379.
- Torok P, Varga P, Booker GR. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I. J Opt Soc Am A 1995; 12: 2136-2144.
- Bomzon Z, Gu M. Space-variant geometrical phases in focused cylindrical light beams. Opt Lett 2007; 32: 3017-3019.
- Bliokh KY, Ostrovskaya EA, Alonso MA, Rodriguez-Herrera OG, Lara D, Dainty C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt Express 2011; 19: 26132-26149.
- Roy B, Ghosh N, Gupta SD, Panigrahi PK, Roy S, Banerjee A. Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap. Phys Rev A 2013; 87: 043823.
- Roy B, Ghosh N, Banerjee A, Gupta SD, Roy S. Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap. New J Phys 2014; 16: 083037.
- Bekshaev AY, Soskin M. Transverse energy flows in vectoral fields of paraxial beams with singularities. Opt Commun 2007; 271: 332-348.
- Berry MV. Optical currents. J Opt A-Pure Appl Opt 2009; 11: 094001.
- Bekshaev AY. Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows. J Opt 2013; 15: 044004.
- Bliokh KY, Alonso MA, Ostrovskaya EA, Aiello A. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys Rev A 2010; 82: 063825.
- Bliokh KY, Bekshaev AY, Nori F. Extraordinary momentum and spin in evanescent waves. Nat Commun 2014; 5: 3300.
- Eismann JS, Banzer P, Neugebauer M. Spin-orbital coupling affecting the evolution of transverse spin. Phys Rev Res 2019; 1: 033143.
- Bareil PB, Sheng Y. Modeling highly focused laser beam in optical tweezers with the vector Gaussian beam in the T-matrix method. J Opt Soc Am A 2013; 30: 1-6.
- Mitri FG. Counterpropagating nondiffracting vortex beams with linear and angular momenta. Phys Rev A 2013; 88: 035804.
- Mitri FG. Quasi-Gaussian electromagnetic beams. Phys Rev A 2013; 87: 035804.
- Mitri FG. Vector spherical quasi-Gaussian vortex beams. Phys Rev E 2014; 89: 023205.
- Volyar AV, Shvedov VG, Fadeeva TA. Structure of a nonparaxial Gaussian beam near the focus. III. Stability, eigenmodes and vortices. Opt Spectrosc 2001; 91: 235-245.
- Marston PL, Crichton JH. Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave. Phys Rev A 1984; 30: 2508-2516.
- Hertel R. Theory of the inverse Faraday effect in metals. J Magn Magn Mater 2006; 303: L1-L4.
- Ashkin A, Dziedzic JM. Optical levitation in high vacuum. Appl Phys Lett 1976; 28: 333-335.
- Meng P, Man Z, Konijnenberg AP, Urbach HP. Angular momentum properties of hybrid cylindrical vector vortex beams in tightly focused optical systems. Opt Express 2019; 27: 35336-35348.
- Chang S, Lee SS. Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam. J Opt Soc Am B 1985; 2: 1853-1860.
- Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
- Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
- Bliokh KY, Bekshaev AY, Kofman AG, Nori F. Photon trajectories, anomalous velocities and weak measurements: a classical interpretation. New J Phys 2013; 15: 073022.
- Ignatovsky VS. Diffraction by a lens having arbitrary opening. Transactions of the Optical Institute in Petrograd 1919; 1: 4.
- Salem MA, Bagei H. Energy flow characteristics of vector X-waves. Opt Express 2011; 19: 8526-8532.
- Vaveliuk P, Martinez-Matos O. Negative propagation effect in nonparaxial Airy beams. Opt Express 2012; 20: 26913-26921.
- Mitri FG. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel ortex beam of progressive waves. J Opt Soc Am A 2016; 33: 1661-1667.
- Barnett SM, Allen L, Cameron RP, Gilson CR, Padgett MJ, Speirits FC, Yao AM. On the natures of the spin and orbital parts of optical angular momentum. J Opt 2016; 18: 064004.
- Saha S, Singh AK, Ray SK, Banerjee A, Gupta SD, Ghosh N. Transverse spin and transverse momentum in scattering of plane waves. Opt Lett 2016; 41: 4499-4502.
- Zhao Y, Edgar JS, Jeffries GDM, McGloin D, Chiu DT. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys Rev Lett 2007; 99: 073901.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20