(44-5) 04 * << * >> * Russian * English * Content * All Issues
  
Energy flux of a vortex field focused using a secant gradient lens
  A.G. Nalimov 1,2
1 IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
     443001, Samara, Russia, Molodogvardeyskaya 151,
  2 Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34
 PDF, 995 kB
  PDF, 995 kB
DOI: 10.18287/2412-6179-CO-688
Pages: 707-711.
Full text of article: Russian language.
 
Abstract:
In this paper we  simulated the focusing of left circular polarized beam with a second order  phase vortex and a second-order cylindrical vector beam by a gradient index  Mikaelian lens. It was shown numerically, that there is an area with a negative  Poynting vector projection on Z axis, that  can be called an area with backward energy flow. Using a cylindrical hole in  the output surface of the lens and optimizing it one can obtain a negative  flow, which will be situated in the maximum intensity region, unlike to previous  papers, in which such backward energy flow regions were situated in a shadow  area. Thereby, this lens will work as an “optical magnet”, it will attract  Rayleigh particles (with diameter about 1/20 of the wavelength) to its surface.
Keywords:
Poynting vector, energy  backflow, gradient index lens, cylindrical vector beam, optical vortex.
Citation:
  Nalimov AG. Energy flux  of a vortex field focused using a secant gradient lens. Computer Optics 2020; 44(5):  707-711. DOI: 10.18287/2412-6179-CO-688.
Acknowledgements:
  The work was partly  funded the Russian Science Foundation under grant # 17-19-01186 (in parts  "Second-order phase vortex"), # 18-19-00595 (in part “Second order cylindrical  vector beam”) and by the RF Ministry of Science and Higher Education within a  state contract with the "Crystallography and Photonics" Research Center of the RAS under agreement 007-ГЗ/Ч3363/26 (in part "Introduction", “Conclusion”).
References:
- Makowski  M, Shimobaba T, Ito T. Increased depth of focus in random-phase-free holographic  projection. Chinese Opt Lett 2016; 14(12): 120901. DOI:  10.3788/COL201614.120901.
 
- Wackenhut  F, Zobiak B, Meixner A, Failla A. Tuning the fields focused by a high NA lens  using spirally polarized beams (Invited Paper) Chin. Opt. Lett., 2017; 15(3):  030013.
 
- Liang  H, Lin Q, Wang Y, Sun Q, Li J. High NA silicon metalens at visible wavelengths.  Conference on Lasers and Electro-Optics, OSA Technical Digest (online) 2018:  FM3J.3. DOI: 10.1364/CLEO_QELS.2018.FM3J.3.
 
- Wan  X, Menon R. High-NA Chromatic-aberration-corrected Diffractive Lens for  Broadband Focusing. In Imaging and Applied Optics 2017 (3D, AIO, COSI, IS,  MATH, pcAOP), OSA Technical Digest (online) 2017: IW3E.4. DOI:  10.1364/ISA.2017.IW3E.4.
 
- Grosjean,  T, Gauthier I. Longitudinally polarized electric and magnetic optical  nano-needles of ultra high lengths. Opt Commun 2013; 294: 333-337.
 
- Wu  Z, Zhang K, Zhang S, Jin Q, Wen Z, Wang L, Dai L, Zhang Z, Chen H, Liang G, Liu  Y, Chen G. Optimization-free approach for generating sub-diffraction  quasi-non-diffracting beams. Opt Express 2018; 26(13): 16585.
 
- Guan  J, Lin J, Chen C, Ma Y, Tan J, Jin P. Transversely polarized sub-diffraction  optical needle with ultra-long depth of focus. Opt Commun 2017; 404: 118-123.
 
- Lalithambigai  K, Suresh P, Ravi V, Prabakaran K, Jaroszewicz Z, Rajesh K, Anbarasan P, Pillai  T. Generation of sub wavelength super-long dark channel using high NA lens  axicon. Opt Lett 2012; 37: 999-1001.
 
- Beversluis  M, Bryant G, Stranick S. Effects of inhomogeneous fields in superresolving  structured-illumination microscopy. J Opt Soc Am A 2008; 25: 1371-1377.
 
- Metzger  M, Konrad A, Skandary S, Ashraf I, Meixner A, Brecht M. Resolution enhancement  for low-temperature scanning microscopy by cryo-immersion. Opt Express 2016;  24: 13023-13032.
 
- Merenda  F, Grossenbacher M, Jeney S, Forró L, Salathé R. Three-dimensional force  measurements in optical tweezers formed with high-NA micromirrors. Opt Lett  2009; 34: 1063-1065.
 
- Novotny  L, Hecht B. Principles of nano-optics. Cam-bridge: Cambridge University Press; 2006.
 
- Sukhov S, Dogariu A. On the concept of “tractor  beams.” Opt Lett 2010; 35(22): 3847-3849. 
 
- Kotlyar  VV, Nalimov AG, Stafeev SS, O’Faolain L. Single metalens for generating  polarization and phase singularities leading to a reverse flow of energy. J Opt  2019; 21(5): 055004. DOI: 10.1088/2040-8986/ab14c8.
 
- Kotlyar VV,  Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both  phase and polarization higher-order singularities in the sharp focus area. Opt  Express 2019 10; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
 
- Stafeev SS, Kozlova ES, Nalimov AG. Focusing of second-order  cylindrical vector beam by gradient index Mikaelian lens. Computer Optics 2020;  44(1): 29-33. DOI: 10.18287/2412-6179-CO-633. 
- Kotlyar VV, Kovalev AA, Nalimov AG, Stafeev SS.  High resolution through graded-index microoptics. Adv Opt Technol 2012; 2012:  647165. DOI:  10.1155/2012/647165.
 
  
  © 2009, IPSI RAS
  151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20