(44-5) 05 * << * >> * Russian * English * Content * All Issues

Optimization method for designing optical elements with an extended light source
E.V. Byzov 1, S.V. Kravchenko 1, M.A. Moiseev 1, L.L. Doskolovich 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1043 kB

DOI: 10.18287/2412-6179-CO-762

Pages: 712-720.

Full text of article: Russian language.

Abstract:
A method for designing an optical element with two free-form surfaces generating a prescribed illuminance distribution in the case of an extended light source is considered. The method is based on the representation of the optical element surfaces by bicubic splines and on the subsequent optimization of their parameters using a quasi-Newton method implemented in the Matlab software. To calculate the merit function, a version of the ray tracing method is proposed. Using the proposed method, an optical element with record characteristics was designed: the ratio of the element height to the source size is 1.6; luminous efficiency is 89.1 %; uniformity of the generated distribution (the ratio of the minimum and average illuminance) in a given square region is 0.92.

Keywords:
freeform surface, ray tracing, optimization, LED optics, illuminance distribution, nonimaging optics, optical design.

Citation:
Byzov EV, Kravchenko SV, Moiseev MA, Doskolovich LL. Optimization method for designing optical elements with an extended light source. Computer Optics 2020; 44(5): 712-720. DOI: 10.18287/2412-6179-CO-762.

Acknowledgements:
This work was financially supported by the RF Ministry of Science and Higher Education within the State assignment to FSRC "Crystallography and Photonics" RAS under agreement 007-ГЗ/Ч3363/26 (Numerical simulation of the optical elements), Russian Science Foundation under project No. 18-19-00326 (Development of the method and design of the optical elements).

References:

  1. Wu R, Feng Z, Zheng Z, Liang R, Benítez P, Miñano JC, Duerr F. Design of freeform illumination optics. Laser Photon Rev 2018; 12(7): 1700310.
  2. Wu R, Xu L, Liu P, Zhang Y, Zheng Z, Li H, Liu X. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampére equation. Opt Lett 2013; 38(2): 229-231.
  3. Mao X, Xu S, Hu X, Xie Y. Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping. Appl Opt 2017; 56(22): 6324-6331.
  4. Wu R, Chang S, Zheng Z, Zhao L, Liu X. Formulating the design of two freeform lens surfaces for point-like light sources. Opt Lett 2018; 43(7): 1619-1622.
  5. Brix K, Hafizogullari Y, Platen A. Designing illumination lenses and mirrors by the numerical solution of Monge–Ampère equations. J Opt Soc Am A 2015; 32(11): 2227-2236.
  6. Yadav NK, ten Thije Boonkkamp JHM, Ijzerman WL. Computation of double freeform optical surfaces using a Monge–Ampère solver: Application to beam shaping. Opt Commun 2019; 439: 251-259.
  7. Schwartzburg Y, Testuz R, Tagliasacchi A, Pauly M. High-contrast computational caustic design. ACM Trans Graph 2014; 33(4): 74.
  8. Oliker V. Controlling light with freeform multifocal lens designed with supporting quadric method(SQM). Opt Express  2017; 25(4): A58-A72.
  9. Doskolovich LL, Bykov DA, Andreev ES, Bezus EA, Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Opt Express 2018; 26(19): 24602-24613.
  10. Doskolovich LL, Bykov DA, Mingazov AA, Bezus EA. Optimal mass transportation and linear assignment problems in the design of freeform refractive optical elements generating far-field irradiance distributions / Opt Express 2019; 27(9): 13083-13097.
  11. Luo Y, Feng Z, Han Y, Li H. Design of compact and smooth free-form optical system with uniform illuminance for LED source. Opt Express 2010; 18: 9055-9063.
  12. Li Z, Yu S, Lin L, Tang Y, Ding X, Yuan W, Yu B. Energy feedback freeform lenses for uniform illumination of extended light source LEDs. Appl Opt 2016; 55: 10375-10381.
  13. Liu Z, Liu P, Yu F. Parametric optimization method for the design of high-efficiency free-form illumination system with a LED source. Chin Opt Lett 2012; 10: 112201-112201.
  14. Fournier F, Rolland J. Optimization of freeform lightpipes for light-emitting-diode projectors. Appl Opt 2008; 47: 957-966.
  15. Zhao S, Wang K, Chen F, Qin Z, Liu S. Integral freeform illumination lens design of LED based pico-projector. Appl Opt 2013; 52: 2985-2993.
  16. Moiseev MA, Doskolovich LL. Design of refractive spline surface for generating required irradiance distribution with large angular dimension. J Mod Opt 2010; 57(7): 536-544. DOI: 10.1080/09500341003764069.
  17. Ries H, Winston R. Tailored edge-ray reflectors for illumination. J Opt Soc Am A 1994; 11: 1260-1264.
  18. Chaves J. Introduction to nonimaging optics. 2nd ed. CRC Press; 2016.
  19. Wu R, Huang CY, Zhu X, Cheng H-N, Liang R. Direct three-dimensional design of compact and ultra-efficient freeform lenses for extended light sources. Optica 2016; 3: 840-843.
  20. Wu R, Hua H, Benítez P, Miñano JC. Direct design of aspherical lenses for extended non-Lambertian sources in two-dimensional geometry. Opt Lett 2015; 40: 3037-3040.
  21. Hu S, Du K, Mei T, Wan L, Zhu N. Ultra-compact LED lens with double freeform surfaces for uniform illumination. Opt Express 2015; 23: 20350-20355.
  22. Li X, Ge P, Wang H. Prescribed intensity in 3D rotational geometry for extended sources by using a conversion function in 2D design, Appl Opt 2017; 56: 1795-1798.
  23. Li X, Ge P, Wang H. An efficient design method for LED surface sources in three-dimensional rotational geometry using projected angle difference Light Res Technol 2019; 51(3): 457-464.
  24. Sorgato S, Chaves J, Thienpont H, Duerr F. Design of illumination optics with extended sources based on wavefront tailoring. Optica 2019; 6: 966-971.
  25. Sorgato S, Mohedano R, Chaves J, Hernández M, Blen J, Grabovičkić D, Benítez P, Miñano J, Thienpont H, Duerr F. Compact illumination optic with three freeform surfaces for improved beam control. Opt Express 2017; 25: 29627-29641.
  26. Dross O, Mohedano R, Benítez P, Miñano JC, Chaves J, Blen J, Hernández M, Muñoz F. Review of SMS design methods and real world applications. Proc SPIE 2004; 5529: 35-47.
  27. Robert CP, Casella G. Monte Carlo statistical methods. 2nd ed. Springer; 2004. ISBN: 978-1-4419-1939-7.
  28. Bentley JL. Multidimensional binary search trees used for associative searching. Commun ACM 1975; 18(9): 509-517.
  29. Cormen TH, Leiserson CE, Rivest RL. Introduction to algorithms. MIT Press; 1989.
  30. Sedgewick R. Algorithms in C++. Addison-Wesley; 1992.
  31. Shikin EV, Plis LI. Curves and surfaces on a computer screen. Spline guide for users [In Russian]. Moscow: “DIALOG-MIFI” Publisher; 1996.
  32. Bicubic interpolation. Source: <https://en.wikipedia.org/wiki/Bicubic_interpolation>.
  33. Moiseev MA, Kravchenko SV, Doskolovich LL. Design of efficient LED optics with two free-form surfaces. Opt Express 2014; 22: A1926-A1935. DOI: 10.1364/OE.22.0A1926.
  34. Kravchenko SV, Moiseev MA, Byzov EV, Doskolovich LL. Design of axisymmetric double-surface refractive optical elements generating required illuminance distributions. Opt Commun 2020; 459: 124976.
  35. TracePro –software for design and analysis of illumination and optical systems. Source: <https://www.lambdares.com/tracepro/>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20