(44-5) 14 * << * >> * Russian * English * Content * All Issues
An algorithm for measuring wind speed based on sampling aerosol inhomogeneities
P.A. Filimonov1, M.L. Belov1, S.E. Ivanov1, V.A. Gorodnichev1, Yu.V. Fedotov1
1 Research institute of radioelectronics and laser technologies of Bauman Moscow State Technical University, Russia
PDF, 1415 kB
DOI: 10.18287/2412-6179-CO-708
Pages: 791-796.
Full text of article: Russian language.
Abstract:
A digital image processing algorithm based on sampling aerosol inhomogeneities was developed in the applied problem of laser remote sensing for measuring the velocity of wind. Tests of the developed algorithm were conducted for synthetic data from numerical simulations and data measured by a lidar. The algorithm developed performs processing of the field of aerosol backscattering coefficient in “Range-Time” coordinates and sufficiently increases the measurement accuracy in comparison with correlation methods.
Keywords:
discrete optical signal processing, digital image processing, lidar, algorithms.
Citation:
Filimonov PA, Belov ML, Ivanov SE, Gorodnichev VA, Fedotov YV. An algorithm for measuring wind speed based on sampling aerosol inhomogeneities. Computer Optics 2020; 44(5): 791-796. DOI: 10.18287/2412-6179-CO-708.
References:
- Annoni J, Fleming P, Scholbrock A, Roadman J, Dana S, Adcock C, Porte-Agel F, Raach S, Haizmann F, Schlipf D. Analysis of control-oriented wake modeling tools using lidar field results. Wind Energy Sci 2018; 3(2): 819-831. DOI: 10.5194/wes-3-819-2018.
- Zhan L, Letizia S, Iungo GV. LiDAR measurements for an onshore wind farm: Wake variability for different incoming wind speeds and atmospheric stability regimes. Wind Energy 2020; 23(3): 501-527. DOI: 10.1002/we.2430.
- Kim MH, Omar AH, Tackett JL, Vaughan MA, Winker DM, Trepte CR, Hu Y, Liu Z, Poole LR, Pitts MC, Kar J, Magill BE. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos Meas Tech 2018; 11(11): 6107-6135. DOI: 10.5194/amt-11-6107-2018.
- Kovalev VA, Eichinger WE. Elastic lidar: Theory, practice, and analysis methods. Hoboken, New Jersey: John Wiley & Sons Inc; 2004. ISBN: 0-471-20171-5.
- Prasad NS, Mylapore AR. Three-beam aerosol backscatter correlation lidar for wind profiling. Opt Eng 2017; 56(3): 031222. DOI: 10.1117/1.OE.56.3.031222.
- Soifer VA, Korotkova O, Khonina SN, Shchepakina EA. Vortex beams in turbulent media: review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
- Suomi I, Gryning SE, O'Connor EJ, Vihma T. Methodology for obtaining wind gusts using Doppler lidar. Q J R Meteorol Soc 2017; 143: 2061-2072. DOI: 10.1002/qj.3059.
- Stull R. Practical meteorology: An algebra-based survey of atmospheric science (version 1.02b). University of British Columbia; 2017. ISBN: 978-0-88865-283-6.
- Matvienko GG, Zade GO, Ferdinandov ES, Kolev IN, Avramova RP. Laser remote sensing correlation methods for measurement of wind velocity [In Russian]. Novosibirsk: “Science” Publisher; 1985.
- Kropotov YA, Proskuryakov AY, Belov AA. Method for forecasting changes in time series parameters in digital information management systems. Computer Optics 2018; 42(6): 1093-1100. DOI: 10.18287/2412-6179-2018-42-6-1093-1100.
- Dérian P, Mauzey CF, Mayor SD. Wavelet-based optical flow for two-component wind field estimation from single aerosol lidar data. J Atmos Oceanic Technol 2015; 32(10): 1759-1778. DOI: 10.1175/JTECH-D-15-0010.1.
- Proakis JG, Manolakis DK. Digital signal processing. 4th ed. Prentice Hall; 2006. ISBN: 978-0-13-187374-2.
- Bishop CM. Pattern reco`gnition and machine learning. Singapore: Springer; 2006. ISBN: 978-0-387-31073-2.
- Agafonova JD, Gaidela AV, Zelter PM, Kapishnikov AV. Efficiency of machine learning algorithms and convolutional neural network for detection of pathological changes in MR images of the brain. Computer Optics 2020; 44(2): 266-273. DOI: 10.18287/2412-6179-CO-671.
- Bakalov VP. Digital modeling of random processes [In Russian]. Moscow: "Science-Press" Publisher; 2002. ISBN: 5-94818-006-9.
- Filimonov PA, Belov ML, Fedotov YV, Ivanov SE, Gorodnichev VA. An algorithm for segmentation of aerosol inhomogeneities. Computer Optics 2018; 42(6): 1062-1067. DOI: 10.18287/2412-6179-2018-42-6-1062-1067.
- Hastie T, Friedman J. The elements of statistical learning. New York: Springer; 2001.
- Du P, Kibbe WA, Lin SM. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 2006; 22(17): 2059-2065. DOI: 10.1093/bioinformatics/btl355.
- Belov ML, Ivanov SE, Gorodnichev VA, Strelkov BV. Laser remote method for measuring gusts of atmospheric wind [In Russian]. Herald of the Bauman Moscow State Technical University, Instrument Engineering 2014; 2(95): 40-52.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20