(44-5) 15 * << * >> * Russian * English * Content * All Issues

Automated method for calculating the Dst-index based on the wavelet model of geomagnetic field variations
O.V. Mandrikova 1, A.A. Stepanenko 2

Institute of Cosmophysical Research and Radio-Wave Propagation of the Far Eastern Branch
of the Russian Academy of Sciences (IKIR FEB RAS),
Kamchatka State Technical University

 PDF, 2297 kB

DOI: 10.18287/2412-6179-CO-709

Pages: 797-808.

Full text of article: Russian language.

Abstract:
A method for calculating the geomagnetic activity index Dst (Dst-index) based on a wavelet model of geomagnetic field variations is proposed. The method allows values of the Dst-index to be automatically obtained with a 1-minute resolution. The method is tested using data from equatorial stations [1]. The paper describes a calculation algorithm and presents estimation results. The calculation results are compared with the classical approach and the Kyoto method [2]. It is shown that the proposed method allows values of the Dst index to be obtained in the on-line mode with an admissible error.

Keywords:
data analysis, wavelet transform, Dst-index, geomagnetic activity.

Citation:
Mandrikova OV, Stepanenko AA. Automated method for calculating the Dst-index based on the wavelet model of geomagnetic field variations [In Russian]. Computer Optics 2020; 44(5): 797-808. DOI: 10.18287/2412-6179-CO-709.

References:

  1. International real-time magnetic observatory network intermagnet. Source: <http://intermagnet.org/>.
  2. World data center for geomagnetism, Kyoto. Source: <http://wdc.kugi.kyoto-u.ac.jp>.
  3. Zaitsev AN, Dalin PA. Sudden variations in the solar wind ion flux and their signature in the geomagnetic field disturbances. Geomagn Aeron 2002; 42(6): 717-724.
  4. Russel CT, Le G, Petrinec SM. Cusp observations of high- and low-latitude reconnection for northward IMF: An alternate view. J Geophys Res Space Phys 2000; 105: 5489-5495.
  5. McPherron R, Kivelson MG, Russell CT. Magnetospheric dynamics. Cambridge: Cambridge University Press; 1995.
  6. Mandrikova OV, Smirnov SE, Solov’ev IS. Method for determining the geomagnetic activity index based on wavelet packets. Geomagn Aeron 2012; 52: 111-120. DOI: 10.1134/S0016793211060107.
  7. Mandrikova OV, Solovjev IS, Geppener VV, Klionskiy DM. New wavelet-based approach intended for the analysis of subtle features of complex natural signals. Pattern Recognit Image Anal 2013; 21: 300-303. DOI: 10.1134/S1054661811020726.
  8. Mandrikova OV, Zhizhikina EA. An automatic method for estimating the geomagnetic field [In Russian]. Computer Optics 2015; 39(3): 420-428. DOI: 10.18287/0134-2452-2015-39-3-420-428.
  9. Sugiura, M. Hourly values of equatorial Dst for the IGY. Annals of the International Geophysical Year 1964; 35: 9-45.
  10. Amiantov AS, Zaytsev AN, Odintsov VI, Petrov VG. Earth's magnetic field variations. Moscow: Database of digital data of magnetic observatories in Russia for the period 1984-2000 on a CD-ROM [In Russian]. 2001. Source: <http://wdcb.ru/stp/data/geo_min.val/Variational_Measurements/Database_Earth_Magnetic_Field_Variations/Variations_of_the%20Earth_Magnetic_Field_Database.pdf>.
  11. Reeves GD, McAdams K, Friedel R, O'Brien T. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett 2003; 30(10): 1529. DOI: 10.1029/2002GL016513.
  12. Sugiura M, Kamei T, Berthelier A, Menvielle M. Equatorial Dst index: 1957-1986. IAGA Bull 1991; 40: 6-14.
  13. Sugiura M, Hendricks S. Provisional hourly values of equatorial Dst for 1961, 1962, and 1963. NASA Technical Note D-4047. Washington: National Aeronautics and Space Administration; 1967.
  14. Karinen A, Mursula K. A new reconstruction of the Dst index for 1932-2002. Ann Geophys 2005; 23: 475-485. DOI: 10.5194/angeo-23-475-2005.
  15. Mandrikova OV, Solovjev IS, Geppener V, Taha Al-Kasasbehd R, Klionskiy D. Analysis of the Earth’s magnetic field variations on the basis of a wavelet-based approach. Digit Signal Process 2013; 23: 329-339. DOI: 10.1016/j.dsp.2012.08.007.
  16. Mandrikova OV, Bogdanov VV, Soloviev IS. Wavelet analysis of earth’s magnetic field data. Geomagn Aeron 2013; 53(2): 282-288. DOI: 10.7868/S0016794013020107.
  17. Mandrikova OV, Solovyev IS, Khomutov SY, Geppener VV, Klionskiy DM, Bogachev MI. Multiscale variation model and activity level estimation algorithm of the Earth's magnetic field based on wavelet packets. Ann Geophys 2018; 36: 1207-1225. DOI: 10.5194/angeo-36-1207-2018.
  18. Mallat SG. A wavelet tour of signal processing. Burlington: Academic Press; 2009.
  19. Holschneider M. Wavelets: An analysis tool. Oxford: Oxford University Press; 1995.
  20. Spitsyn VG, Bolotova YuA, Phan NH, Bui TT. Using a Haar wavelet transform, principal component analysis and neural networks for OCR in the presence of impulse noise. Computer Optics 2016; 40(2): 249-257. DOI: 10.18287/2412-6179-2016-40-2-249-257.
  21. Fetisova NV. An algorithm for detecting intense anomalous changes in the time dependence of ionospheric parameters. Computer Optics 2019; 43(6): 1064-1071. DOI: 10.18287/2412-6179-2019-43-6-1064-1071.
  22. Kunagu P, Balasis G, Lesur V, Chandrasekhar E, Papadimitriou C. Wavelet characterization of external magnetic sources as observed by CHAMP satellite: evidence for unmodeled signals in geomagnetic field models. Geophys J Int 2013; 192: 946-950. DOI: 10.1093/gji/ggs093.
  23. Hafez AG, Khan TA, Kohda T. Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks. Digit Signal Process 2010; 20: 715-723.
  24. Jach A, Kokoszka P, Sojka J, Zhu LJ. Wavelet-based index of magnetic storm activity. J Geophys Res Space Phys 2006; 111(A9): 1-11. DOI: 10.1029/2006JA011635.
  25. Balasis G, Daglis IA, Papadimitriou M, Georgiou M, Haagmans R. Magnetospheric ULF wave studies in the frame of Swarm mission: a time-frequency analysis tool for automated detection of pulsations in magnetic and electric field observations. Earth Planets Space 2013; 65: 1385-1798.
  26. Balasis G, Daglis IA, Papadimitriou C, Pilipenko V. Magnetospheric ULF wave power features in the topside ionosphere revealed observations by Swarm observations. Geophys Res Lett 2015; 42: 6922-6930.
  27. Zaourar N, Hamoudi M, Madea M, Balasis G, Holschneider M. Wavelet-based multiscale analysis of geomagnetic disturbance. Earth Planets Space 2013; 65: 1525-1540. DOI: 10.5047/eps.2013.05.001.
  28. Xu Z, Zhu L, Sojka J, Kokosza P, Jach A. An assessment study of the wavelet-based index of magnetic storm activity (WISA) and its comprasion to the Dst index. J Atmos Sol Terr Phys 2008; 70: 1579-1588.
  29. Chui CK. An introduction to wavelets. San Diego: Academic Press; 1992.
  30. Mandrikova OV, Solovev IS, Zalyaev TL. Methods of analysis of geomagnetic field variations and cosmic ray data. Earth Planet Space 2014; 66: 1-17. DOI: 10.1186/s40623-014-0148-0.
  31. Bartels J, Heck NH, Johnson HF. The three-hour-range index measuring geomagnetic activity. Terrestrial Magnetism and Atmospheric Electricity 1939; 44: 411-454. DOI: 10.1029/TE044i004p00411.
  32. Levin BR. Theoretical basics of statistical radio engineering [In Russian]. Moscow: "Radio i Svyaz" Publisher; 1989.
  33. Mandrikova OV, Geppener VV, Mandrikova BS. Method of analysis of cosmic ray data based on neural networks of LVQ. J Phys: Conf Ser 2019; 23: 329-339. DOI: 10.1088/1742-6596/1368/5/0520.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20