(44-6) 03 * << * >> * Russian * English * Content * All Issues

The structure of normal modes in parallel ideal optical fibers with strong coupling
C.N. Alexeyev 1, E.V. Barshak 1, B.P. Lapin 1, M.A. Yavorsky 1

V.I. Vernadsky Crimean Federal University,
295000, Simferopol, Russia, Prospekt Vernadskogo, 4

 PDF, 927 kB

DOI: 10.18287/2412-6179-CO-777

Pages: 876-882.

Full text of article: Russian language.

Abstract:
In this paper, we studied an effect of strong evanescent coupling on the structure of normal modes in a system of parallel ideal multimode optical fibers. Using the formalism of the degenerate perturbation theory and a scalar waveguide equation for this system, analytical expressions of higher-order supermodes and their propagation constants have been determined. We have shown that the structure of modes in the case of strong evanescent coupling coincides with the structure of normal modes for weakly coupled parallel fibers. We have demonstrated that in the presence of strong coupling, expressions for corrections to the scalar propagation constant are modified, deducing them analytically.

Keywords:
strongly coupled fibers, modes' structure, optical vortex.

Citation:
Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. The structure of normal modes of parallel ideal optical fibers with an intensive coupling. Computer Optics 2020; 44(6): 876-882. DOI: 10.18287/2412-6179-CO-777.

Acknowledgements:
This work was financially supported by the Russian Science Foundation (Project No. 20-12-00291).

References:

  1. Jones AL. Coupling of optical fibers and scattering in fibers. J Opt Soc Am B 1965; 55(3): 261-271. DOI: 10.1364/JOSA.55.000261.
  2. Hall DG, Tompson BJ. Selected papers on coupled-mode theory in guided-wave optics. Bellingham, Washington USA: SPIE Optical Engineering Press; 1993.
  3. Barybin AA, Dmitriev VA. Modern electrodynamics and coupled-mode theory: Application to guided-wave optics. Princeton: Rinton Press; 2002. ISBN: 978-1-58949-007-9.
  4. Black RJ, Gagnon L. Optical waveguide modes: polarization, coupling and symmetry. New York: McGraw-Hill Education; 2010. ISBN: 978-0-07-162296-7.
  5. Joseph T, John J. Two-core fiber-based mode converter and mode demultiplexer. J Opt Soc Am B 2019; 36(8): 1987-1994. DOI: 10.1364/JOSAB.36.001987.
  6. Wang G, Lu Y, Yang X, Duan L, Yao J. High-sensitivity magnetic field sensor based on a dual-core photonic crystal fiber. Appl Opt 2019; 58(2): 5800-5806. DOI: 10.1364/AO.58.005800.
  7. Miri M-A, Cotrufo M, Alu A. Optical gradient forces between evanescently coupled waveguides. Opt Lett 2018; 43(17): 4104-4107. DOI: 10.1364/OL.43.004104.
  8. Christodoulides D, Lederer F, Silberberg Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 2003; 424: 817-823. DOI: 10.1038/nature01936.
  9. Sumetsky M. Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation. Opt Express 2005; 13(11): 4331-4340. DOI: 10.1364/OPEX.13.004331.
  10. Ren Y, Zhang R, Ti C, Liu Y. Tapered optical fiber loops and helices for integrated photonic device characterization and microfluidic roller coasters. Optica 2016; 3(11): 1205-1208. DOI: 10.1364/OPTICA.3.001205.
  11. Yuan S, Chen L, Wang Z, Wang R, Wu X, Zhang X. Mode coupling in a terahertz multi-mode whispering-gallery-mode resonator. Opt Lett 2019; 44(8): 2020-2023. DOI: 10.1364/OL.44.002020.
  12. Nye JF, Berry MV. Dislocations in wave trains. Proc Math Phys Eng Sci 1974; 336(1605): 165-190. DOI: 10.1098/rspa.1974.0012.
  13. Leake KD, Hawkins AR, Schmidt H. All-optical particle trap using orthogonally intersecting beams [Invited]. Photon Res 2013; 1(1): 47-51. DOI: 10.1364/PRJ.1.000047.
  14. Bernet S, Jesacher A, Fürhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt Express 2006; 14(9): 3792-3805. DOI: 10.1364/OE.14.003792.
  15. Mari E, Anzolin G, Tamburini F, Prasciolu M, Umbriaco G, Bianchini A, Barbieri C, Romanato F. Fabrication and testing of I=2 optical vortex phase masks for coronography. Opt Express 2010; 18(3): 2339-2344. DOI: 10.1364/OE.18.002339.
  16. Mirhosseini M, Magaña-Loaiza OS, O'Sullivan MN, Rodenburg B, Malik M, Lavery MPJ, Padgett MJ, Gauthier DJ, Boyd RW. High-dimensional quantum cryptography with twisted light. New J Phys 2015; 17: 033033. DOI: 10.1088/1367-2630/17/3/033033.
  17. Wang J. Advances in communications using optical vortices. Photon Res 2016; 4(5): B14-B28. DOI: 10.1364/PRJ.4.000B14.
  18. Alexeyev CN, Boklag NA, Yavorsky MA. Higher order modes of coupled optical fibers. J Opt 2010; 12(11): 115704. DOI: 10.1088/2040-8978/12/11/115704.
  19. Alexeyev CN, Boklag NA, Fadeyeva TA, Yavorsky MA. Tunneling of orbital angular momentum in parallel optical waveguides. J Opt 2011; 13(6): 064012. DOI: 10.1088/2040-8978/13/6/064012.
  20. Turpin A, Pelegrí G, Polo J, Mompart J, Ahufinger V. Engineering of orbital angular momentum supermodes in coupled optical waveguides. Sci Rep 2017; 7: 44057. DOI: 10.1038/srep44057.
  21. Zhang Z, Gan J, Heng X, Li M, Li J, Xu S, Yang Z. Low-crosstalk orbital angular momentum fiber coupler design. Opt Express 2017; 25(10): 11200-11209. DOI: 10.1364/OE.25.011200.
  22. Alexeyev CN, Milodan AV, Alexeyeva MC, Yavorsky MA. Inversion of the topological charge of optical vortices in a coil fiber resonator. Opt Lett 2016; 41(7): 1526-1529. DOI: 10.1364/OL.41.001526.
  23. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Transmission of optical vortices through fiber loop resonators. Opt Lett 2019; 44(16): 4044-4047. DOI: 10.1364/OL.44.004044.
  24. Zheng J, Yang A, Wang T, Zeng X, Cao N, Liu M, Pang F, Wang T. Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator. Photon Res 2018; 6(5): 396-402. DOI: 10.1364/PRJ.6.000396.
  25. Alexeyev CN, Barshak EV, Lapin BP, Yavorsky MA. Topological resonances, super-efficient OAM control and spin-orbit interaction enhancement in fiber loop resonators. Phys Rev A 2020; 101(6): 063801. DOI: 10.1103/PhysRevA.101.063801.
  26. Snyder AW, Love JD. Optical waveguide theory. London, New York: Chapman and Hall; 1985. ISBN: 978-0-412-09950-2.
  27. Fleming JW. Dispersion in GeO2–SiO2 glasses. Appl Opt 1984;23(24): 4486-4493. DOI: 10.1364/AO.23.004486.
  28. Napiorkowski M, Urbanczyk W. Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers. Opt Express 2018; 26(9): 12131-12143. DOI: 10.1364/OE.26.012131.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20