(44-6) 04 * << * >> * Russian * English * Content * All Issues

Analytical design of refractive optical elements generating a prescribed two-dimensional intensity distribution
E.V. Byzov 1, L.L. Doskolovich 1,2, S.V. Kravchenko 1, N.L. Kazanskiy 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1320 kB

DOI: 10.18287/2412-6179-CO-818

Pages: 883-892.

Full text of article: Russian language.

Abstract:
A new source-target mapping for the design of refractive optical elements generating prescribed 2D intensity distributions is proposed. The calculation of the optical element is reduced to the solution of ordinary explicit differential equations. The simulation results presented demonstrate high performance of the proposed method. While generating uniform rectangular intensity distributions with angular dimensions varying from 80°×1° to 40°×20°, the normalized root-mean-square deviations between the generated and required distributions do not exceed 15 %.

Keywords:
Freeform surface, LED optics, refractive optics, nonimaging optics, intensity distribution, computation methods.

Citation:
Byzov EV, Doskolovich LL, Kravchenko SV, Kazanskiy NL. Analytical design of refractive optical elements generating a prescribed two-dimensional intensity distribution. Computer Optics 2020; 44(6): 883-892. DOI: 10.18287/2412-6179-CO-818.

Acknowledgements:
This work was financially supported by the Russian Science Foundation (Project No. 18-19-00326).

References:

  1. Scuello M, Abramov I, Gordon J, Weintraub S. Museum lighting: Why are some illuminants preferred? J Opt Soc Am A 2004; 21(2): 306-311.
  2. Li Z, Yu S, Lin L, Tang Y, Ding X, Yuan W, Yu B. Energy feedback freeform lenses for uniform illumination of extended light source LEDs. Appl Opt 2016; 55: 10375-10381..
  3. Zhao S, Wang K, Chen F, Qin Z, Liu S. Integral freeform illumination lens design of LED based pico-projector. Appl Opt 2013; 52: 2985-2993.
  4. Moiseev MA, Doskolovich LL. Design of refractive spline surface for generating required irradiance distribution with large angular dimension. J Mod Opt 2010; 57(7): 536-544.
  5. Ries H, Winston R. Tailored edge-ray reflectors for illumination. J Opt Soc Am A 1994; 11: 1260-1264.
  6. Chaves J. Introduction to nonimaging optics. 2nd ed. CRC Press; 2016.
  7. Wu R, Huang CY, Zhu X, Cheng H-N, Liang R. Direct three-dimensional design of compact and ultra-efficient freeform lenses for extended light sources. Optica 2016; 3: 840-843.
  8. Wu R, Hua H, Benítez P, Miñano JC. Direct design of aspherical lenses for extended non-Lambertian sources in two-dimensional geometry. Opt Lett 2015; 40: 3037-3040.
  9. Hu S, Du K, Mei T, Wan L, Zhu N. Ultra-compact LED lens with double freeform surfaces for uniform illumination. Opt Express 2015; 23: 20350-20355.
  10. Li X, Ge P, Wang H. Prescribed intensity in 3D rotational geometry for extended sources by using a conversion function in 2D design. Appl Opt 2017; 56: 1795-1798.
  11. Li X, Ge P, Wang H. An efficient design method for LED surface sources in three-dimensional rotational geometry using projected angle difference. Lighting Res Technol 2019; 51(3): 457-464.
  12. Byzov EV, Kravchenko SV, Moiseev MA, Bezus EA, Doskolovich LL. Optimization method for designing double-surface refractive optical elements for an extended light source. Opt Express 2020; 28: 24431-24443.
  13. Guan P, Wang X-J. On a Monge-Ampere equation arising in geometric optics. J Differ Geom 1998; 48(2): 205-223.
  14. Oliker VI. Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties. Proc SPIE 2005; 5942: 594207.
  15. Parkyn WA. Illumination lenses designed by extrinsic differential geometry. Proc SPIE 1988; 3482: 389-396.
  16. Kirkilionis M, Kromker S, Rannacher R, Tomi F. Trends in nonlinear analysis. Berlin: Springer; 2003: 193-224.
  17. Elmer W, Cooke F. Optical design of reflectors. Part 2. Appl Opt 1978; 17(7): 977-979.
  18. Moiseev MA, Doskolovich LL. Design of TIR optics generating the prescribed irradiance distribution in the circle region. J Opt Soc Am A 2012; 29(9): 1758-1763.
  19. Doskolovich LL, Kazanskiy NL, Kharitonov SI, Perlo P, Bernard S. Designing reflectors to generate a line-shaped directivity diagram. J Mod Opt 2005; 52(11): 1529-1536.
  20. Doskolovich LL, Kazanskiy NL, Bernard S. Designing a mirror to form a line-shaped directivity diagram. J Mod Opt 2007; 54(4): 589-597.
  21. Dmitriev AYu, Doskolovich LL. Design of refracting surface to generate a line-segment directivity diagram. Computer Optics 2010; 34(4): 476-480.
  22. Doskolovich LL, Dmitriev AY, Bezus EA, Moiseev MA. Analytical design of freeform optical elements generating an arbitrary-shape curve. Appl Opt 2013; 52(12): 2521-2526.
  23. Doskolovich LL, Bezus EA, Moiseev MA, Bykov DA, Kazanskiy NL. Analytical source-target mapping method for the design of freeform mirrors generating prescribed 2D intensity distributions. Opt Express 2016; 24: 10962-10971.
  24. Wu R, Xu L, Liu P, Zhang Y, Zheng Z, Li H, Liu X. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampére equation. Opt Lett 2013; 38: 229-231.
  25. Wu R, Li K, Liu P, Zheng Z, Li H, Liu X. Conceptual design of dedicated road lighting for city park and housing estate. Appl Opt 2013; 52: 5272-5278.
  26. Wu R, Benítez P, Zhang Y, Miñano JC. Influence of the characteristics of a light source and target on the Monge–Ampére equation method in freeform optics design. Opt Lett 2014; 39: 634-637.
  27. Doskolovich LL, Bykov DA, Mingazov AA, Bezus EA. Optimal mass transportation and linear assignment problems in the design of freeform refractive optical elements generating far-field irradiance distributions. Opt Express 2019; 27: 13083-13097.
  28. Mingazov AA, Bykov DA, Bezus EA, Doskolovich LL. On the use of the supporting quadric method in the problem of designing double freeform surfaces for collimated beam shaping. Opt Express 2020; 28: 22642-22657.
  29. Doskolovich LL, Andreev ES, Kharitonov SI, Kazansky NL. Reconstruction of an optical surface from a given source-target map, J Opt Soc Am A 2016; 33: 1504-1508.
  30. Fournier FR, Cassarly WJ, Rolland JP. Fast freeform reflector generation using source-target maps. Opt Express 2010; 18: 5295-5304.
  31. Wang L, Qian K, Luo Y. Discontinuous free-form lens design for prescribed irradiance, Appl Opt 2007; 46: 3716-3723.
  32. Ding Y, Liu X, Zheng Z, Gu P. Freeform LED lens for uniform illumination. Opt Express 2008; 16: 12958-12966.
  33. Wu R, Li H, Zheng Z, Liu X. Freeform lens arrays for off-axis illumination in an optical lithography system. Appl Opt 2011; 50: 725-732.
  34. Bruneton A, Bäuerle A, Wester R, Stollenwerk J, Loosen P. High resolution irradiance tailoring using multiple freeform surfaces, Opt Express 2013; 21(9): 10563-10571.
  35. Bösel C, Gross H. Ray mapping approach for the efficient design of continuous freeform surfaces. Opt Express 2016; 24(13): 14271-14282.
  36. Schwartzburg Y, Testuz R, Tagliasacchi A, Pauly M. High-contrast computational caustic design. ACM Trans Graph 2014; 33(4): 1-11.
  37. Feng Z, Froese BD, Liang R. Freeform illumination optics construction following an optimal transport map. Appl Opt 2016; 55(16): 4301-4306.
  38. Lin C, Fang Y, Su W. Design of LED free-form lens for sensor systems, Sens Mater 2020; 32(6): 2177-2185.
  39. Desnijder K, Hanselaer P, Meuret Y. Flexible design method for freeform lenses with an arbitrary lens contour. Opt Lett 2017; 42(24): 5238-5241.
  40. Prautzsch H, Boehm W, Paluszny M. Bézier and B-spline techniques. Berlin, Heidelberg: Springer-Verlag; 2002.
  41. TracePro – software for design and analysis of illumination and optical systems. Source: <https://www.lambdares.com/tracepro/>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20