(44-6) 05 * << * >> * Russian * English * Content * All Issues
Excitation of surface plasmon waves with a nanoantenna: simple analytical solution and its numerical verification
A.V. Dyshlyuk 1,2,3, A.A. Bogdanov 4, O.B. Vitirk 1,2
1 IACP FEB RAS, 690041, Russia, Vladivostok, 5, Radio Str.,
2 Far Eastern Federal University, 690091, Russia, Vladivostok, 8, Sukhanova Str.,
3 Vladivostok State University of Economics and Service, 690014, Russia, Vladivostok, 41, Gogolya Str.,
4 ITMO University, 197101, Russia, St. Petersburg, 49, Kronverskiy Ave.
PDF, 1344 kB
DOI: 10.18287/2412-6179-CO-755
Pages: 893-900.
Full text of article: Russian language.
Abstract:
In this work, we demonstrate a simple analytical approach to the problem of surface plasmon polaritons excitation with a metallic nanoantenna placed above a metal surface. The method uses the reciprocity theorem and is similar to the calculation of amplitudes of dielectric waveguide modes excited by a current distribution. To maximize clarity of the demonstration, we formulate the problem in a simple two-dimensional geometry. The analytical results are shown to agree well with the numerical solution obtained by finite elements in frequency domain and finite difference in time domain methods.
Keywords:
surface plasmon polaritons, nanoantenna, excitation of surface plasmon polaritons, plasmonics, nanooptics.
Citation:
Dyshlyuk AV, Bogdanov AA, Vitrik OB. Excitation of surface plasmon waves with a nanoantenna: simple analytical solution and its numerical verification. Computer Optics 2020; 44(6): 893-900. DOI: 10.18287/2412-6179-CO-755.
Acknowledgements:
This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-02-00556А).
References:
- Wood R. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc 1902; 18: 269.
- Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J Opt Soc Am 1941; 31(3): 213.
- Ritchie RH. Plasma losses by fast electrons in thin films. Phys Rev 1957; 106(5): 874-881.
- Dionne JA, Lezec HJ, Atwater HA. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett 2006; 6(9): 1928-1932.
- Sorger VJ, et al. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat Commun 2011; 2(1): 331.
- Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing. Nat Photon 2009; 3(7): 388-394.
- Colombelli R, et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl Phys Lett 2001; 78(18): 2620.
- Hu Q, Williams BS, Kumar S, Callebaut H, Kohen S, Reno JL. Resonant-phonon-assisted THz quantum-cascade lasers with metal–metal waveguides. Semicond Sci Technol 2005; 20(7): S228-S236.
- Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater 2008; 7(6): 442-453.
- Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators B Chem 1999; 54(1-2): 3-15.
- Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem Rev 2011; 111(6): 3828-3857.
- Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W. High-harmonic generation by resonant plasmon field enhancement. Nature 2008; 453(7196): 757-760.
- Lee J, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 2014; 511(7507): 65-69.
- Vampa G, et al. Plasmon-enhanced high-harmonic generation from silicon. Nat Phys 2017; 13(7): 659-662.
- Talley CE, et al. Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 2005; 5(8): 1569-1574.
- McFarland AD, Young MA, Dieringer JA, Van Duyne RP. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 2005; 109(22): 11279-11285.
- Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS. Quantum plasmonics. Nat Phys 2013; 9(6): 329-340.
- Andersen ML, Stobbe S, Sørensen AS, Lodahl P. Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nat Phys 2011; 7(3): 215-218.
- Maier SA. Plasmonics: fundamentals and applications. Springer Science & Business Media; 2007.
- Brolo AG. Plasmonics for future biosensors. Nat Photon 2012; 6(11): 709-713.
- MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI. Ultrafast active plasmonics. Nat Photon 2009; 3(1): 55-58.
- Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010; 9(3): 193-204.
- Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photon 2012; 6(11): 737-748.
- Pitarke JM, Silkin VM, Chulkov EV, Echenique PM. Theory of surface plasmons and surface-plasmon polaritons. Reports Prog Phys 2007; 70(1): 1-87.
- Lévêque G, Martin OJF. Optimization of finite diffraction gratings for the excitation of surface plasmons. J Appl Phys 2006; 100(12): 124301.
- Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys A 1968; 216: 398-410.
- Kretschmann E, Raether H. Notizen: radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 1968; 23(12): 2135-2136.
- Permyakov DV, Mukhin IS, Shishkin II, Samusev AK, Belov PA, Kivshar YS. Mapping electromagnetic fields near a subwavelength hole. JETP Lett 2014; 99(11): 622-626.
- Renger J, Grafström S, Eng LM. Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films. Phys Rev B 2007; 76(4): 1-7.
- Zhao C, Zhang J, Liu Y. Light manipulation with encoded plasmonic nanostructures. EPJ Appl Metamaterials 2014; 1: 6.
- O’Connor D, Ginzburg P, Rodriguez-Fortuno FJ, Wurtz GA, Zayats AV. Spin-orbit coupling in surface plasmon scattering by nanostructures. Nat Commun 2014; 5: 5327.
- Rodriguez-Fortuno FJ, et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 2013; 340(6130): 328-330.
- Krasnok A, Li S, Lepeshov S, Savelev R, Baranov DG, Alú A. All-optical switching and unidirectional plasmon launching with nonlinear dielectric nanoantennas. Phys Rev Appl 2018; 9(1): 014015.
- Petrov MI, Sukhov SV, Bogdanov AA, Shalin AS, Dogariu A. Surface plasmon polariton assisted optical pulling force. Laser Photon Rev 2016; 10(1): 116-122.
- Bigourdan F, Hugonin J-P, Marquier F, Sauvan C, Greffet J-J. Nanoantenna for electrical generation of surface plasmon polaritons. Phys Rev Lett 2016; 116(10): 106803.
- Dvoretckaia L, Ladutenko K, Mozharov A, Zograf G, Bogdanov A, Mukhin I. Electrically driven metal and all-dielectric nanoantennas for plasmon polariton excitation. J Quant Spectrosc Radiat Transf 2020; 244: 106825.
- Sinev I, Komissarenko F, Iorsh I, Permyakov D, Samusev A, Bogdanov A. Steering of guided light with dielectric nanoantennas. ACS Photon 2020; 7(3): 680-686. DOI: 10.1021/acsphotonics.9b01515.
- Sinev IS, et al. Chirality driven by magnetic dipole response for demultiplexing of surface waves. Laser Photon Rev 2017; 11(5): 1700168.
- Evlyukhin AB, Bozhevolnyi SI. Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations. Phys Rev B 2005; 71(13): 134304.
- Søndergaard T, Bozhevolnyi SI. Surface plasmon polariton scattering by a small particle placed near a metal surface: An analytical study. Phys Rev B Condens Matter 2004; 69(4): 1-10.
- Snyder AW, Love JD. Optical waveguide theory. Chapman and Hall; 1983.
- Liu H, et al. Surface plasmon generation by subwavelength isolated objects. IEEE J Sel Top Quantum Electron 2008; 14(6): 1522-1529.
- Baron A, et al. Generation of surface plasmons with compact devices. Proc SPIE 2013; 8627: 86270W.
- Novotny L, Hecht B. Principles of nano-optics. Cambridge: Cambridge University Press; 2006.
- Haynes WM. CRC handbook of chemistry and physics. 95th ed. Boca Raton, London, New York: CRC Press; 2014.
- Born M, Wolf E. Principles of optics. Cambridge: Cambridge University Press; 1999.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20